23 research outputs found

    Modified Dachengqi Tang improves decreased gastrointestinal motility in postoperative esophageal cancer patients

    Get PDF
    AbstractObjectiveTo investigate the clinical effects of modified Dachengqi Tang (DCQT) on promoting gastrointestinal motility in post-operative esophageal cancer patients.MethodsSixty postoperative esophageal cancer patients were enrolled and randomly assigned to the modified treatment group or the control group (30 patients in each group). Patients in the treatment group were given DCQT made from decocted herbs and administered via nasojejunal tube at a dosage of 150 mL. Gastrointestinal motility was assessed by recording time for recovery of bowel sounds, flatus, defecation, and the total amount of gastric drainage during the first three postoperative days. Plasma motilin (MTL) and vasoactive intestinal peptide (VIP) were measured one hour before and three days after surgery.ResultsCompared with the control group, the times to first bowel sound, flatus, and defecation were significantly shorter and there was less gastric drainage in the treatment group (P < 0.01, P < 0.01, P < 0.01, and P < 0.05, respectively). In the treatment group, postoperative plasma MTL was significantly higher (P < 0.01) and VIP was significantly lower than those in the control group (P < 0.05). There was no difference found in either MTL or VIP from before to after operation in the treatment group (P > 0.05). MTL was significantly lower and VIP was higher postoperatively in the control group, compared to before surgery (P < 0.01).ConclusionsModified DCQT effectively improved decreased gastrointestinal motility in postoperative esophageal cancer patients by increasing MTL and reducing VIP

    Implications for an imidazol-2-yl carbene intermediate in the rhodanase-catalyzed C-S bond formation reaction of anaerobic ergothioneine biosynthesis

    Full text link
    In the anaerobic ergothioneine biosynthetic pathway, a rhodanese domain containing enzyme (EanB) activates tne hercynine's sp2 ε-C-H Dona ana replaces it with a C-S bond to produce ergothioneine. The key intermediate for this trans-sulfuration reaction is the Cys412 persulfide. Substitution of the EanB-Cys412 persulfide with a Cys412 perselenide does not yield the selenium analog of ergothioneine, selenoneine. However, in deuterated buffer, the perselenide-modified EanB catalyzes the deuterium exchange between hercynine's sp2 ε-C-H bond and D2O. Results from QM/MM calculations suggest that the reaction involves a carbene intermediate and that Tyr353 plays a key role. We hypothesize that modulating the pKa of Tyr353 will affect the deuterium-exchange rate. Indeed, the 3,5-difluoro tyrosine containing EanB catalyzes the deuterium exchange reaction with k ex of ~10-fold greater than the wild-type EanB (EanBWT). With regards to potential mechanisms, these results support the involvement of a carbene intermediate in EanB-catalysis, rendering EanB as one of the few carbene-intermediate involving enzymatic systems.R01 GM106443 - NIGMS NIH HHSAccepted manuscrip

    OvoAMtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities

    Get PDF
    Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans, OvoAMtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoAMtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoAMtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoAMtht (sulfoxide synthase vs. thiol oxygenase activities). OvoAMtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities.R35 GM136294 - NIGMS NIH HHSPublished versio

    The Process and Mechanism of Preparing Nanoporous Silicon: Helium Ion Implantation

    No full text
    Ion implantation is an effective way to control performance in semiconductor technology. In this paper, the fabrication of 1~5 nm porous silicon by helium ion implantation was systemically studied, and the growth mechanism and regulation mechanism of helium bubbles in monocrystalline silicon at low temperatures were revealed. In this work, 100 keV He ions (1~7.5 × 1016 ions/cm2) were implanted into monocrystalline silicon at 115 °C~220 °C. There were three distinct stages in the growth of helium bubbles, showing different mechanisms of helium bubble formation. The minimum average diameter of a helium bubble is approximately 2.3 nm, and the maximum number density of the helium bubble is 4.2 × 1023 m−3 at 175 °C. The porous structure may not be obtained at injection temperatures below 115 °C or injection doses below 2.5 × 1016 ions/cm2. In the process, both the ion implantation temperature and ion implantation dose affect the growth of helium bubbles in monocrystalline silicon. Our findings suggest an effective approach to the fabrication of 1~5 nm nanoporous silicon, challenging the classic view of the relationship between process temperature or dose and pore size of porous silicon, and some new theories are summarized

    The Expression Level and Clinical Significance of MMP-7 Protein 
in Peripheral Blood in the Patients with Lung Cancer

    No full text
    Background and objective Matrix metalloproteinase 7 (MMP-7), also known as matrilysin, is a member of the MMP family. The objectives of this study were to test MMP-7 protein levels in the peripheral blood of lung cancer patients and healthy control subjects and to determine their corresponding clinical significance. Methods Peripheral blood samples were obtained from 114 lung cancer patients and 100 healthy control subjects. MMP-7 protein levels in the plasma were measured by enzyme-linked immunosorbent assay. Results The plasma protein levels of MMP-7 in lung cancer patients (median=0.72 ng/mL) were significantly higher than those in healthy control subjects (median=0.30 ng/mL)(P&lt;0.001). When the cutoff of MMP-7 protein level was set at 0.56 ng/mL, the sensitivity and specificity of detecting lung cancer were 62.3% and 76.0%, respectively. However, the lung cancer patients and healthy control subjects did not statistically differ in age, sex, smoking status, tumor size, pathological classification, as well as lymphatic metastasis and stage (P&gt;0.05). Conclusion The plasma protein levels of MMP-7 increase in the peripheral blood of lung cancer patients. Peripheral blood MMP-7 can be used as a tumor marker for detecting lung cancer. The fact that no significant correlation between the protein levels of MMP-7 and lung cancer clinical parameters was observed in this study warrants further analysis in larger samples

    Interactions between Lake-Level Fluctuations and Waterlogging Disasters around a Large-Scale Shallow Lake: An Empirical Analysis from China

    No full text
    Waterlogging disasters in the lakeside areas of shallow lakes that located in plain regions are sensitive to lake-level fluctuations. However, there are very few studies on the influences of lake-level fluctuations on waterlogged lakeside areas from a large lake basin perspective. This paper proposes an integrated hydrodynamic model employing the MIKE software to contribute to the existing literature by filling the gap constituted by the lack of an estimation of the impacts of lake-level fluctuations on waterlogging disasters by relevant models. First, a coupled one-dimensional and two-dimensional hydrodynamic model is established to simulate the waterlogging routing in the lakeside area around Nansi Lake (NL) in addition to the flood routing in NL and its tributaries. Second, the model is calibrated and verified by two measured flood events in July 2007 and July 2008; the results indicate that the model can correctly simulate the drainage process of pumping stations in the lakeside area, as well as the interactions between the waterlogging drainage and lake-level fluctuations. Third, the process of waterlogging in the lakeside area of NL is simulated under different rainfall events and initial lake-level conditions. Fourth, based on the results of the model, this paper illustrates the influences of lake-level fluctuations on the waterlogged area around the lake, as well as the different responses of waterlogging in different areas to lake-level fluctuations in NL and the main cause for these differences. Finally, based on the results of the model, this paper presents some implications for waterlogging simulations and drainage system design

    Association between different MAP levels and 30-day mortality in sepsis patients: a propensity-score-matched, retrospective cohort study

    No full text
    Abstract Background Sepsis is a life-threatening organ dysfunction caused by the infection-related host response disorder. Adequate mean arterial pressure is an important prerequisite of tissue and organ perfusion, which runs through the treatment of sepsis patients, and an appropriate mean arterial pressure titration in the early-stage correlates to the positive outcome of the treatment. Therefore, in the present study, we aimed to elucidate the relationship between early mean arterial pressure levels and short-term mortality in sepsis patients. Methods We included all suspected sepsis patients from MIMIC-III database with average mean arterial pressure ≥ 60 mmHg on the first day of intensive care unit stay. Those patients were then divided into a permissive low-mean arterial pressure group (60–65 mmHg) and a high-mean arterial pressure group (> 65 mmHg). Multivariate Cox regression analysis was conducted to analyze the relationship between MAP level and 30-day, 60-day, and 100-day mortality of suspected sepsis patients in the two groups. Propensity score matching, inverse probability of treatment weighing, standardized mortality ratio weighting, PA weighting, overlap weighting, and doubly robust analysis were used to verify our results. Results A total of 14,031 suspected sepsis patients were eligible for inclusion in our study, among which 1305 (9.3%) had an average first-day mean arterial pressure of 60–65 mmHg, and the remaining 12,726 patients had an average first-day mean arterial pressure of more than 65 mmHg. The risk of 30-day mortality was reduced in the high mean arterial pressure group compared with the permissive low-mean arterial pressure group (HR 0.67 (95% CI 0.60–0.75; p < 0.001)). The higher mean arterial pressure was also associated with lower 60-day and 100-day in-hospital mortality as well as with shorter duration of intensive care unit stay. Patients in the high-mean arterial pressure group also had more urine output on the first and second days of intensive care unit admission. Conclusions After risk adjustment, the initial mean arterial pressure of above 65 mmHg was associated with reduced short-term mortality, shorter intensive care unit stay, and higher urine volume in the first two days among patients with sepsis
    corecore