97 research outputs found

    Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    Get PDF
    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities

    Creating a Computable Cognitive Model of Visual Aesthetics for Automatic Aesthetics Evaluation of Robotic Dance Poses

    Get PDF
    Inspired by human dancers who can evaluate the aesthetics of their own dance poses through mirror observation, this paper presents a corresponding mechanism for robots to improve their cognitive and autonomous abilities. Essentially, the proposed mechanism is a brain-like intelligent system that is symmetrical to the visual cognitive nervous system of the human brain. Specifically, a computable cognitive model of visual aesthetics is developed using the two important aesthetic cognitive neural models of the human brain, which is then applied in the automatic aesthetics evaluation of robotic dance poses. Three kinds of features (color, shape and orientation) are extracted in a manner similar to the visual feature elements extracted by human brains. After applying machine learning methods in different feature combinations, machine aesthetics models are built for automatic evaluation of robotic dance poses. The simulation results show that our approach can process visual information effectively by cognitive computation, and achieved a very good evaluation performance of automatic aesthetics

    Automatic Aesthetics Evaluation of Robotic Dance Poses Based on Hierarchical Processing Network.

    Get PDF
    Vision plays an important role in the aesthetic cognition of human beings. When creating dance choreography, human dancers, who always observe their own dance poses in a mirror, understand the aesthetics of those poses and aim to improve their dancing performance. In order to develop artificial intelligence, a robot should establish a similar mechanism to imitate the above human dance behaviour. Inspired by this, this paper designs a way for a robot to visually perceive its own dance poses and constructs a novel dataset of dance poses based on real NAO robots. On this basis, this paper proposes a hierarchical processing network-based approach to automatic aesthetics evaluation of robotic dance poses. The hierarchical processing network first extracts the primary visual features by using three parallel CNNs, then uses a synthesis CNN to achieve high-level association and comprehensive processing on the basis of multi-modal feature fusion, and finally makes an automatic aesthetics decision. Notably, the design of this hierarchical processing network is inspired by the research findings in neuroaesthetics. Experimental results show that our approach can achieve a high correct ratio of aesthetic evaluation at 82.3%, which is superior to the existing methods

    Cardioprotective effects of high-altitude adaptation in cardiac surgical patients: a retrospective cohort study with propensity score matching

    Get PDF
    BackgroundThe cardioprotective effect of remote ischemia preconditioning in clinical studies is inconsistent with experimental results. Adaptation to high-altitude hypoxia has been reported to be cardioprotective in animal experiments. However, the clinical significance of the cardioprotective effect of high-altitude adaptation has not been demonstrated.MethodsA retrospective cohort study with propensity score matching was designed to compare the outcomes of cardiac surgery between highlanders and lowlanders in a tertiary teaching hospital. The data of adult cardiac surgical patients from January 2013 to December 2022, were collected for analysis. Patients with cardiopulmonary bypass and cardioplegia were divided into a low-altitude group (<1,500 m) and a high-altitude group (≥1,500 m) based on the altitude of their place of residence.ResultsOf 3,020 patients, the majority (87.5%) permanently lived in low-altitude regions [495 (435, 688) m], and there were 379 patients (12.5%) in the high-altitude group [2,552 (1,862, 3,478) m]. The 377 highlander patients were matched with lowlander patients at a ratio of 1:1. The high-altitude group exhibited a 44.5% reduction in the incidence of major adverse cardiovascular events (MACEs) compared with the low-altitude group (6.6% vs. 11.9%, P = 0.017). The patients in the moderate high-altitude subgroup (2,500–3,500 m) had the lowest incidence (5.6%) of MACEs among the subgroups. The level of creatinine kinase muscle-brain isoenzymes on the first postoperative morning was lower in the high-altitude group than in the low-altitude group (66.5 [47.9, 89.0] U/L vs. 69.5 [49.3, 96.8] U/L, P = 0.003).ConclusionsHigh-altitude adaptation exhibits clinically significant cardioprotection in cardiac surgical patients

    Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells

    Get PDF
    In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.1784.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+K+η)=(2.68±0.17±0.17±0.08)×103\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+ηπ+)=(37.8±0.4±2.1±1.2)×103\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+K+η)=(1.62±0.10±0.03±0.05)×103\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+ηπ+)=(17.41±0.18±0.27±0.54)×103\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+K+KS0)=(15.02±0.10±0.27±0.47)×103\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+KS0π+)=(1.109±0.034±0.023±0.035)×103\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+K+π0)=(0.748±0.049±0.018±0.023)×103\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+K+Kπ+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    ICOSL+ plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist

    Get PDF
    Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD

    A turn-on fluorescent chemodosimeter based on detelluration for detecting ferrous iron (Fe2+) in living cells

    Full text link
    A turn-on fluorescent probe for the detection of Fe2+ is facilely synthesized via a nucleophile substitution reaction. The fluorescent probe, N-butyl-4-phenyltellanyl-1,8-naphthalimide (Naph-Te), shows excellent selectivity to Fe2+ in a mixed solution of acetonitrile and phosphate buffer under aerobic conditions. The coexistence of biological abundant metal ions such as Na+, K+, Ca2+ and Mg2+ has little effect on the fluorescence signal. This turn-on response is achieved via a redox-involved reaction triggered by Fe2+ at neutral pH and room temperature, which removes the heavy-atom effect of the tellurium atom on the naphthalimide fluorophore to afford a fluorescent product (N-butyl-4-hydroxyl-1,8-naphthalimide). The probe has excellent cell membrane permeability and is further applied successfully to monitor supplementary Fe2+ in live HL-7702 cells using a laser confocal fluorescence microscope
    corecore