37 research outputs found

    The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers.</p> <p>Results</p> <p>Here, we have studied the expression of the PEA3 subfamily members PEA3/ETV4 and ER81/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is <it>MMP-1</it>. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with <it>MMP-1 </it>expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas.</p> <p>Conclusions</p> <p>This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.</p

    Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation

    Get PDF
    AbstractWe investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162μg/mouse. Mice were sampled 1, 3, and 28days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analyzed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO2 in the lungs up to 28days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (±1.3 fold; p<0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, were associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities

    Communications Biophysics

    Get PDF
    Contains research objectives and summary of research on thirteen research projects split into four section.National Institutes of Health (Grant 1 RO1 NS10737-01)National Institutes of Health (Grant 1 ROI NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-02)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare, Grant 23-P-55854National Institutes of Health (Grant 1 RO1 NS11680-01)Norlin Music, Inc.Clarence J. LeBel FundNational Institutes of Health (Grant 1 RO1 NS11080-01A1)National Institutes of Health (Grant 5 TO1 GM01555-08)M.I.T. Health Sciences FundBoston City Hospital Purchase Order 1176-05-21335-C

    ETS domain transcription factor PEA3 sub family and oesophageal and gastric cancer

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The pitfalls of bedside glucometers

    No full text

    Targeting key signalling pathways in oesophageal adenocarcinoma: A reality for personalised medicine?

    No full text
    Cancer treatments are rapidly changing. Curative treatment for oesophageal adenocarcinoma currently involves surgery and cytotoxic chemotherapy or chemoradiotherapy. Outcomes for both regimes are generally poor as a result of tumor recurrence. We have reviewed the key signalling pathways associated with oesophageal adenocarcinomas and discussed the recent trials of novel agents that attempt to target these pathways. There are many trials underway with the aim of improving survival in oesophageal cancer. Currently, phase 2 and 3 trials are focused on MAP kinase inhibition, either through inhibition of growth factor receptors or signal transducer proteins. In order to avoid tumor resistance, it appears to be clear that targeted therapy will be needed to combat the multiple signalling pathways that are in operation in oesophageal adenocarcinomas. This may be achievable in the future with the advent of gene signatures and a combinatorial approach

    Polymorphisms of MTHFR and susceptibility to oesophageal adenocarcinoma in a Caucasian United Kingdom population

    No full text
    AIM: To identify if methylene tetra-hydrofolatereductase (MTHFR) C677T polymorphisms are associated with oesophageal adenocarcnomas in a Caucasian population and to test whether folic acid and homocysteine levels are linked with cancer risk. METHODS: A case control study comprising of 58 non cancer and 48 cancer patients, MTHFR C667T genotyping was made and serum folate, homocysteine and vitamin B12 levels were made. Tumour stage, differentiation and survival was recorded. A P value of less than 0.05 was taken to be significant. The χ(2) used to compare discrete variables and the Mantel-Cox was used to compare survival. A P value less than 0.05 was deemed to be significant. RESULTS: MTHFR polymorphisms is associated with an increased risk of several cancers. A link between MTHFR C677T polymorphisms and oesophageal squamous cell carcinoma and gastric cardia adenocarcinoma has been demonstrated in at risk Chinese populations. In a Western European population the role of the MTHFR gene has not previously been investigated in the setting of oesophageal adenocarcinoma. No association between folic acid levels and cancer patients was found. The unstable MTHFR 667 TT genotype occurred in 11% cancers and 7% controls, but statistical significance was not reached, homocysteine levels and folic acid levels were not affected, cancer patients with TT genotype displayed a trend for a shorter survival 7 mo vs 20 mo. Serum vitamin B12 levels were higher in the cancer group. The MTHFR 667 TT genotype is much lower than previous population studies. CONCLUSION: We conclude that serum folic acid and MTHFR polymorphisms are not associated with an increased risk of oesophageal adenocarcinoma, although cancers with unstable TT genotype may indicate a more aggressive disease course
    corecore