88 research outputs found

    The one dimensional Coulomb lattice fluid capacitor

    Get PDF
    22 pages, 18 figures, RevTexInternational audienceThe one dimensional Coulomb lattice fluid in a capacitor configuration is studied. The model is formally exactly soluble via a transfer operator method within a field theoretic representation of the model. The only interactions present in the model are the one dimensional Coulomb interaction between cations and anions and the steric interaction imposed by restricting the maximal occupancy at any lattice site to one particle. Despite the simplicity of the model, a wide range of intriguing physical phenomena arise, some of which are strongly reminiscent of those seen in experiments and numerical simulations of three dimensional ionic liquid based capacitors. Notably we find regimes where over-screening and density oscillations are seen near the capacitor plates. The capacitance is also shown to exhibit strong oscillations as a function of applied voltage. It is also shown that the corresponding mean field theory misses most of these effects. The analytical results are confirmed by extensive numerical simulations

    Counterion Condensation and Fluctuation-Induced Attraction

    Full text link
    We consider an overall neutral system consisting of two similarly charged plates and their oppositely charged counterions and analyze the electrostatic interaction between the two surfaces beyond the mean-field Poisson-Boltzmann approximation. Our physical picture is based on the fluctuation-driven counterion condensation model, in which a fraction of the counterions is allowed to ``condense'' onto the charged plates. In addition, an expression for the pressure is derived, which includes fluctuation contributions of the whole system. We find that for sufficiently high surface charges, the distance at which the attraction, arising from charge fluctuations, starts to dominate can be large compared to the Gouy-Chapmann length. We also demonstrate that depending on the valency, the system may exhibit a novel first-order binding transition at short distances.Comment: 15 pages, 8 figures, to appear in PR

    Effective interaction between helical bio-molecules

    Get PDF
    The effective interaction between two parallel strands of helical bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6AËš6\AA it can be both attractive and repulsive. Furthermore we report a nonmonotonic behaviour of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the bio-molecules is suitably renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    From Cylinders to Bilayers: A Structural Study of Phase Transformations in a Lyotropic Liquid Crystal

    No full text
    International audienc

    Direct measurement of depletion and structural forces in a micellar system

    No full text
    International audienc

    Effect of electrolyte on the depletion and structural forces in a micellar system

    No full text
    International audienc

    Crystallography of systems with long periods: a neutron-scattering study of sodium dodecyl sulfate/water mesophases

    No full text
    International audienc
    • …
    corecore