233 research outputs found

    Algorithms to calculate the most reliable maximum flow in content delivery network

    Get PDF
    Funding Information: Funding Statement: This work was partly supported by Open Research Fund from State Key Laboratory of Smart Grid Protection and Control, China (Zhang B, www.byqsc.net/com/nrjt/), Rapid Support Project (61406190120, Zhang B), the Fundamental Research Funds for the Central Universities (2242021k10011, Zhang B, www.seu.edu.cn) and the National Key R&D Program of China (2018YFC0830200, Zhang B, www.most.gov.cn).Peer reviewedPublisher PD

    Synthesis and Characterization of Nanostructured WC-Co/Al Powder Prepared by Mechanical Alloying

    Get PDF
    Nanostructured WC-Co/Al powder was synthesized from WC-12Co powder and pure Al powder by mechanical alloying (MA). The morphology and microstructural evolution of WC-Co/Al powder were investigated by a series of characterization methods. The results showed that the β-Co phase in the initial WC-12Co powder was replaced by the AlxCo phases (such as Al9Co2 and Al13Co4). As the ball milling time increased, the average grain size of WC in the WC-Co/Al powder decreased firstly and then remained at a constant value of around 40 nm. The deposition behavior of powders sprayed by high velocity oxygen fuel (HVOF) spraying was investigated. During spraying, the WC-Co/Al powder had a better flattening than the WC-12Co powder without ball milling, which is beneficial to fabricate compact coatings with lower porosity

    Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene

    Full text link
    Theoretical research has predicted that ripples of graphene generates effective gauge field on its low energy electronic structure and could lead to zero-energy flat bands, which are the analog of Landau levels in real magnetic fields. Here we demonstrate, using a combination of scanning tunneling microscopy and tight-binding approximation, that the zero-energy Landau levels with vanishing Fermi velocities will form when the effective pseudomagnetic flux per ripple is larger than the flux quantum. Our analysis indicates that the effective gauge field of the ripples results in zero-energy flat bands in one direction but not in another. The Fermi velocities in the perpendicular direction of the ripples are not renormalized at all. The condition to generate the ripples is also discussed according to classical thin-film elasticity theory.Comment: 4 figures, Phys. Rev.

    A human-in-the-loop haptic interaction with subjective evaluation

    Get PDF
    To date, one of the challenges in Human-Computer Interaction (HCI) is fully immersive multisensory remote physical interaction technologies. The applications of haptic perception in HCI can enrich the interaction details and effectively improve the immersion and realism of interaction. In the human-in-the-loop haptic interaction system, the quality of experience (QoE) of the human operator plays an essential role. However, QoE in haptic interaction is still in its infancy. Based on the typical application scenarios of haptic operation, the paper constructs a haptic-visual interaction framework and analyzes the QoE influencing factors. Through subjective evaluation experiments, the paper establishes a haptic interaction database that can provide a research basis for further exploring the relationship between various influencing factors and interactive QoE

    HSC-GPT: A Large Language Model for Human Settlements Construction

    Full text link
    The field of human settlement construction encompasses a range of spatial designs and management tasks, including urban planning and landscape architecture design. These tasks involve a plethora of instructions and descriptions presented in natural language, which are essential for understanding design requirements and producing effective design solutions. Recent research has sought to integrate natural language processing (NLP) and generative artificial intelligence (AI) into human settlement construction tasks. Due to the efficient processing and analysis capabilities of AI with data, significant successes have been achieved in design within this domain. However, this task still faces several fundamental challenges. The semantic information involved includes complex spatial details, diverse data source formats, high sensitivity to regional culture, and demanding requirements for innovation and rigor in work scenarios. These factors lead to limitations when applying general generative AI in this field, further exacerbated by a lack of high-quality data for model training. To address these challenges, this paper first proposes HSC-GPT, a large-scale language model framework specifically designed for tasks in human settlement construction, considering the unique characteristics of this domain

    The Role of IL-17 Promotes Spinal Cord Neuroinflammation via Activation of the Transcription Factor STAT3 after Spinal Cord Injury in the Rat

    Full text link
    Study Design. In this study, we investigated the role of IL-17 via activation of STAT3 in the pathophysiology of SCI. Objective. The purpose of the experiments is to study the expression of IL-17 and related cytokines via STAT3 signaling pathways, which is caused by the acute inflammatory response following SCI in different periods via establishing an acute SCI model in rat. Methods. Basso, Beattie, and Bresnahan hind limb locomotor rating scale was used to assess the rat hind limb motor function. Immunohistochemistry was used to determine the expression levels of IL-17 and p-STAT3 in spinal cord tissues. Western blotting analysis was used to determine the protein expression of p-STAT3 in spinal cord tissue. RT-PCR was used to analyze the mRNA expression of IL-17 and IL-23p19 in the spleen tissue. ELISA was used to determine the peripheral blood serum levels of IL-6, IL-21, and IL-23. Results. Compared to the sham-operated group, the expression levels of IL-17, p-STAT3, IL-6, IL-21, and IL-23 were significantly increased and peaked at 24 h after SCI. The increased levels of cytokines were correlated with the SCI disease stages. Conclusion. IL-17 may play an important role in promoting spinal cord neuroinflammation after SCI via activation of STAT3

    Protective effect of Saussurea involucrata polysaccharide against skin dryness induced by ultraviolet radiation

    Get PDF
    Background: Exposure to ultraviolet B (UVB) radiation can damage the epidermis barrier function and eventually result in skin dryness. At present, little work is being devoted to skin dryness. Searching for active ingredients that can protect the skin against UVB-induced dryness will have scientific significance.Methods:Saussurea involucrata polysaccharide (SIP) has been shown to have significant antioxidant and anti-photodamage effects on the skin following UVB irradiation. To evaluate the effect of SIP on UVB-induced skin dryness ex vivo, SIP-containing hydrogel was applied in a mouse model following exposure to UVB and the levels of histopathological changes, DNA damage, inflammation, keratinocyte differentiation, lipid content were then evaluated. The underlying mechanisms of SIP to protect the cells against UVB induced-dryness were determined in HaCaT cells.Results: SIP was found to lower UVB-induced oxidative stress and DNA damage while increasing keratinocyte differentiation and lipid production. Western blot analysis of UVB-irradiated skin tissue revealed a significant increase in peroxisome proliferator-activated receptor-α (PPAR-α) levels, indicating that the underlying mechanism may be related to PPAR-α signaling pathway activation.Conclusions: By activating the PPAR-α pathway, SIP could alleviate UVB-induced oxidative stress and inhibit the inflammatory response, regulate proliferation and differentiation of keratinocytes, and mitigate lipid synthesis disorder. These findings could provide candidate active ingredients with relatively clear mechanistic actions for the development of skin sunscreen moisturizers

    The roles of interleukin-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury

    Get PDF
    Background The aim of this study was to evaluate the roles of interleukin (IL)-17A in risk stratification and prognosis of patients with sepsis-associated acute kidney injury (SAKI). Methods We enrolled 146 sepsis patients (84 non-SAKI and 62 SAKI patients) admitted to the emergency department from November 2020 to November 2021. Patients with SAKI were differentiated based on the severity of acute kidney injury. All clinical parameters were evaluated upon admission before administering antibiotic treatment. Inflammatory cytokines were assessed using flow cytometry and the Pylon 3D automated immunoassay system (ET Healthcare). In addition, a receiver operating characteristic (ROC) curve was utilized to determine the prognostic values of IL-17A in SAKI. Results The levels of creatinine, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor alpha, C-reactive protein, and procalcitonin (PCT) were significantly higher in the SAKI group than in the non-SAKI group (p < 0.05). The level of IL-17A revealed significant differences among stages 1, 2, and 3 in SAKI patients (p < 0.05). The mean levels of PCT, IL-4, and IL-17A were significantly higher in the non-survival group than in the survival group in SAKI patients (p < 0.05). In addition, the area under the ROC curve of IL-17A was 0.811. Moreover, the IL-17A cutoff for differentiating survivors from non-survivors was 4.7 pg/mL, of which the sensitivity and specificity were 77.4% and 71.0%, respectively. Conclusion Elevated levels of IL-17A could predict that SAKI patients are significantly prone to worsening kidney injury with higher mortality. The usefulness of IL-17A in treating SAKI requires further research
    corecore