296 research outputs found

    Parallel finite volume simulation of the spherical shell dynamo with pseudo-vacuum magnetic boundary conditions

    Full text link
    In this paper, we study the parallel simulation of the magnetohydrodynamic (MHD) dynamo in a rapidly rotating spherical shell with pseudo-vacuum magnetic boundary conditions. A second-order finite volume scheme based on a collocated quasi-uniform cubed-sphere grid is applied to the spatial discretization of the MHD dynamo equations. To ensure the solenoidal condition of the magnetic field, we adopt a widely-used approach whereby a pseudo-pressure is introduced into the induction equation. The temporal integration is split by a second-order approximate factorization approach, resulting in two linear algebraic systems both solved by a preconditioned Krylov subspace iterative method. A multi-level restricted additive Schwarz preconditioner based on domain decomposition and multigrid method is then designed to improve the efficiency and scalability. Accurate numerical solutions of two benchmark cases are obtained with our code, comparable to the existing local method results. Several large-scale tests performed on the Sunway TaihuLight supercomputer show good strong and weak scalabilities and a noticeable improvement from the multi-level preconditioner with up to 10368 processor cores

    Iterative PnP and its application in 3D-2D vascular image registration for robot navigation

    Full text link
    This paper reports on a new real-time robot-centered 3D-2D vascular image alignment algorithm, which is robust to outliers and can align nonrigid shapes. Few works have managed to achieve both real-time and accurate performance for vascular intervention robots. This work bridges high-accuracy 3D-2D registration techniques and computational efficiency requirements in intervention robot applications. We categorize centerline-based vascular 3D-2D image registration problems as an iterative Perspective-n-Point (PnP) problem and propose to use the Levenberg-Marquardt solver on the Lie manifold. Then, the recently developed Reproducing Kernel Hilbert Space (RKHS) algorithm is introduced to overcome the ``big-to-small'' problem in typical robotic scenarios. Finally, an iterative reweighted least squares is applied to solve RKHS-based formulation efficiently. Experiments indicate that the proposed algorithm processes registration over 50 Hz (rigid) and 20 Hz (nonrigid) and obtains competing registration accuracy similar to other works. Results indicate that our Iterative PnP is suitable for future vascular intervention robot applications.Comment: Submitted to ICRA 202

    Optical flow-based vascular respiratory motion compensation

    Full text link
    This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.Comment: This manuscript has been accepted by IEEE Robotics and Automation Letter
    corecore