4 research outputs found

    Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa

    Get PDF
    Three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern predominantly drove South Africa's fourth COVID-19 wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild type amino acid at Q493.The two lineages only differ outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature . BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.08 - 0.09) and 0.10 (95% CI: 0.09 - 0.11) per day respectively over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus

    Candida auris Clinical Isolates Associated with Outbreak in Neonatal Unit of Tertiary Academic Hospital, South Africa

    No full text
    Candida auris was first detected at a university-affiliated hospital in Johannesburg, South Africa, in 2009. We used whole-genome sequencing to describe the molecular epidemiology of C. auris in the same hospital during 2016–2020; the neonatal unit had a persistent outbreak beginning in June 2019. Of 287 cases with culture-confirmed C. auris infection identified through laboratory surveillance, 207 (72%) had viable isolates and 188 (66%) were processed for whole-genome sequencing. Clade III (118/188, 63%) and IV (70/188, 37%) isolates co-circulated in the hospital. All 181/188 isolates that had a fluconazole MIC >32 µg/mL had ERG11 mutations; clade III isolates had VF125AL substitutions, and clade IV isolates had K177R/N335S/E343D substitutions. Dominated by clade III, the neonatal unit outbreak accounted for 32% (91/287) of all cases during the study period. The outbreak may have originated through transmission from infected or colonized patients, colonized healthcare workers, or contaminated equipment/environment

    Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa.

    No full text
    Three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern predominantly drove South Africa's fourth COVID-19 wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild type amino acid at Q493.The two lineages only differ outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature . BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.08 - 0.09) and 0.10 (95% CI: 0.09 - 0.11) per day respectively over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus

    Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa

    No full text
    DATA AVAILABILITY : All of the SARS-CoV-2 genomes generated and presented in this article are publicly accessible through the GISAID platform (https://www.gisaid.org/). The GISAID accession identifiers of the sequences analyzed in this study are provided as part of Supplementary Table 1. Other raw data for this study are provided as a supplementary dataset at https://github.com/krisp-kwazulu-natal/SARSCoV2_South_Africa_Omicron_BA4_BA5. The reference SARS-CoV-2 genome (MN908947.3) was downloaded from the National Center for Biotechnology Information database (https://www.ncbi.nlm.nih.gov/).CODE AVAILABILITY : All custom scripts to reproduce the analyses and figures presented in this article are available at https://github.com/krisp-kwazulu-natal/ SARSCoV2_South_Africa_Omicron_BA4_BA5.Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa’s fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69–70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69–70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08–0.09) and 0.10 (95% CI: 0.09–0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.The South African Medical Research Council (SAMRC) with funds received from the National Department of Health. Sequencing activities for the National Institute for Communicable Diseases (NICD) are supported by a conditional grant from the South African National Department of Health as part of the emergency COVID-19 response; a cooperative agreement between the NICD of the NHLS and the US Centers for Disease Control and Prevention (CDC) (U01IP001048 and 1 NU51IP000930); the African Society of Laboratory Medicine (ASLM) and Africa Centers for Disease Control and Prevention through a sub-award from the Bill and Melinda Gates Foundation (grant number INV-018978); the UK Foreign, Commonwealth and Development Office and Wellcome (221003/Z/20/Z); and the UK Department of Health and Social Care, managed by the Fleming Fund and performed under the auspices of the SEQAFRICA project. This research was also supported by the Coronavirus Aid, Relief, and Economic Security Act (CARES ACT) through the CDC and COVID International Task Force (ITF) funds through the CDC under the terms of a subcontract with the African Field Epidemiology Network (AFENET) (AF-NICD-001/2021). Sequencing activities at KRISP and the Centre for Epidemic Response and Innovation are supported, in part, by grants from the World Health Organization, the Rockefeller Foundation (HTH 017), the Abbott Pandemic Defense Coalition (APDC), the US National Institutes of Health (U01 AI151698) for the United World Antivirus Research Network (UWARN) and the INFORM Africa project through IHVN (U54 TW012041) and the South African Department of Science and Innovation (SA DSI) and the SAMRC under the BRICS JAF (2020/049). Sequencing at the Botswana Harvard AIDS Institute Partnership was supported by funding from the Bill and Melinda Gates Foundation, the Foundation for Innovation in Diagnostics, the National Institutes of Health Fogarty International Centre (3D43TW009610-09S1) and the HHS/NIH/ National Institute of Allergy and Infectious Diseases (NIAID) (5K24AI131928-04 and 5K24AI131924-04).http://www.nature.com/naturemedicineam2023Medical VirologySDG-03:Good heatlh and well-bein
    corecore