146 research outputs found

    Discovery of 28 pulsars using new techniques for sorting pulsar candidates

    Full text link
    Modern pulsar surveys produce many millions of candidate pulsars, far more than can be individually inspected. Traditional methods for filtering these candidates, based upon the signal-to-noise ratio of the detection, cannot easily distinguish between interference signals and pulsars. We have developed a new method of scoring candidates using a series of heuristics which test for pulsar-like properties of the signal. This significantly increases the sensitivity to weak pulsars and pulsars with periods close to interference signals. By applying this and other techniques for ranking candidates from a previous processing of the Parkes Multi-beam Pulsar Survey, 28 previously unknown pulsars have been discovered. These include an eccentric binary system and a young pulsar which is spatially coincident with a known supernova remnant.Comment: To be published in Monthly Notices of the Royal Astronomical Society. 11 pages, 9 figure

    The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries

    Full text link
    We have embarked on a survey for pulsars and fast transients using the 13-beam Multibeam receiver on the Parkes radio telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 us. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of eight improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30% of the mid-latitude survey complete, we have re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA

    Double and single recycled pulsars: an evolutionary puzzle?

    Get PDF
    We investigate the statistics of isolated recycled pulsars and double neutron star binaries in the Galactic disk. Since recycled pulsars are believed to form through accretion and spinup in close binaries, the isolated objects presumably originate from disrupted progenitors of double neutron stars. There are a comparable number of double neutron star systems compared to isolated recycled pulsars. We find that standard evolutionary models cannot explain this fact, predicting several times the number of isolated recycled pulsars than those in double neutron star systems. We demonstrate, through population synthesis calculations, that the velocity distribution of isolated recycled pulsars is broader than for binary systems. When this is accounted for in a model for radio pulsar survey selection effects, which include the effects of Doppler smearing for the double neutron star binaries, we find that there is a small (25%) bias towards the detection of double neutron star systems. This bias, however, is not significant enough to explain the observational discrepancy if standard (sigma = 265 km/s) neutron star natal kick velocities are invoked in binary population syntheses. Population syntheses in which the 1D Maxwellian velocity dispersion of the natal kick is sigma=170 km/s are consistent with the observations. These conclusions further support earlier findings the neutron stars formed in close interacting binaries receive significantly smaller natal kicks than the velocities of Galactic single pulsars would seem to indicate.Comment: 12 pages, MNRAS (accepted

    Accelerating incoherent dedispersion

    Full text link
    Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of 9x for the direct algorithm when compared to an optimised quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimisation is unnecessary to achieve real-time processing. Where further speed-ups are desirable, we find that the tree and sub-band algorithms are able to provide 3-7x better performance at the cost of certain smearing, memory consumption and development time trade-offs. We finish with a discussion of the implications of these results for future transient surveys. Our GPU dedispersion code is publicly available as a C library at: http://dedisp.googlecode.com/Comment: 15 pages, 4 figures, 2 tables, accepted for publication in MNRA

    Selection of radio pulsar candidates using artificial neural networks

    Full text link
    Radio pulsar surveys are producing many more pulsar candidates than can be inspected by human experts in a practical length of time. Here we present a technique to automatically identify credible pulsar candidates from pulsar surveys using an artificial neural network. The technique has been applied to candidates from a recent re-analysis of the Parkes multi-beam pulsar survey resulting in the discovery of a previously unidentified pulsar.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 9 pages, 7 figures, and 1 tabl

    VOEvent Standard for Fast Radio Bursts

    Full text link
    Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time, triggering a range of multi-wavelength and multi-messenger telescopes to search for repeating bursts and/or associated emission. Here we propose a method for disseminating FRB triggers using Virtual Observatory Events (VOEvents). This format was developed and is used successfully for transient alerts across the electromagnetic spectrum and for multi-messenger signals such as gravitational waves. In this paper we outline a proposed VOEvent standard for FRBs that includes the essential parameters of the event and where these parameters should be specified within the structure of the event. An additional advantage to the use of VOEvents for FRBs is that the events can automatically be ingested into the FRB Catalogue (FRBCAT) enabling real-time updates for public use. We welcome feedback from the community on the proposed standard outlined below and encourage those interested to join the nascent working group forming around this topic.Comment: 11 pages, 2 figures, parameter definition table in appendi

    A search for dispersed radio bursts in archival Parkes Multibeam Pulsar Survey data

    Get PDF
    A number of different classes of potentially extra-terrestrial bursts of radio emission have been observed in surveys with the Parkes 64m radio telescope, including "Rotating Radio Transients", the "Lorimer burst" and "perytons". Rotating Radio Transients are radio pulsars which are best detectable in single-pulse searches. The Lorimer burst is a highly dispersed isolated radio burst with properties suggestive of extragalactic origin. Perytons share the frequency-swept nature of the Rotating Radio Transients and Lorimer burst, but unlike these events appear in all thirteen beams of the Parkes Multibeam receiver and are probably a form of peculiar radio frequency interference. In order to constrain these and other radio source populations further, we searched the archival Parkes Multibeam Pulsar Survey data for events similar to any of these. We did not find any new Rotating Radio Transients or bursts like the Lorimer burst. We did, however, discover four peryton-like events. Similar to the perytons, these four bursts are highly dispersed, detected in all thirteen beams of the Parkes multibeam receiver, and have pulse widths between 20--30 ms. Unlike perytons, these bursts are not associated with atmospheric events like rain or lightning. These facts may indicate that lightning was not responsible for the peryton phenomenon. Moreover, the lack of highly dispersed celestial signals is the evidence that the Lorimer burst is unlikely to belong to a cosmological source population.Comment: Accepted for publication in MNRAS; 7 pages, 3 figures, 1 tabl

    RRATs: New Discoveries, Timing Solutions & Musings

    Get PDF
    We describe observations of Rotating RAdio Transients (RRATs) that were discovered in a re-analysis of the Parkes Multi-beam Pulsar Survey (PMPS). The sources have now been monitored for sufficiently long to obtain seven new coherent timing solutions, to make a total of 14 now known. Furthermore we announce the discovery of 7 new transient sources, one of which may be extragalactic in origin (with z0.1z\sim0.1) and would then be a second example of the so-called `Lorimer burst'. The timing solutions allow us to infer neutron star characteristics such as energy-loss rate, magnetic field strength and evolutionary timescales, as well as facilitating multi-wavelength followup by providing accurate astrometry. All of this enables us to consider the question of whether or not RRATs are in any way special, i.e. a distinct and separate population of neutron stars, as has been previously suggested. We see no reason to consider 'RRAT' as anything other than a detection label, the subject of a selection effect in the parameter space searched. However, single-pulse searches can be utilised to great effect to identify pulsars difficult, or impossible, to find by other means, in particular those with long-periods (half of the PMPS RRATs have periods greater than 4 seconds), high-magnetic field strengths (B1013B\gtrsim 10^{13} G) and pulsars approaching the 'death valley'. The detailed nulling properties of such pulsars are unknown but the mounting evidence suggests a broad range of behaviour in the pulsar population. The group of RRATs fit in to the picture where pulsar magnetospheres switch between stable configurations.Comment: accepted for publication in MNRAS, 17 pages, 7 figures, 3 table

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure
    corecore