1,863 research outputs found
Singularities In Scalar-Tensor Cosmologies
In this article, we examine the possibility that there exist special
scalar-tensor theories of gravity with completely nonsingular FRW solutions.
Our investigation in fact shows that while most probes living in such a
Universe never see the singularity, gravity waves always do. This is because
they couple to both the metric and the scalar field, in a way which effectively
forces them to move along null geodesics of the Einstein conformal frame. Since
the metric of the Einstein conformal frame is always singular for
configurations where matter satisfies the energy conditions, the gravity wave
world lines are past inextendable beyond the Einstein frame singularity, and
hence the geometry is still incomplete, and thus singular. We conclude that the
singularity cannot be entirely removed, but only be made invisible to most, but
not all, probes in the theory.Comment: 23 pages, latex, no figure
Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons
In many strongly-interacting models of electroweak symmetry breaking the
lowest-lying observable particle is a pseudo-Goldstone boson of approximate
scale symmetry, the pseudo-dilaton. Its interactions with Standard Model
particles can be described using a low-energy effective nonlinear chiral
Lagrangian supplemented by terms that restore approximate scale symmetry,
yielding couplings of the pseudo-dilaton that differ from those of a Standard
Model Higgs boson by fixed factors. We review the experimental constraints on
such a pseudo-dilaton in light of new data from the LHC and elsewhere. The
effective nonlinear chiral Lagrangian has Skyrmion solutions that may be
identified with the `electroweak baryons' of the underlying
strongly-interacting theory, whose nature may be revealed by the properties of
the Skyrmions. We discuss the finite-temperature electroweak phase transition
in the low-energy effective theory, finding that the possibility of a
first-order electroweak phase transition is resurrected. We discuss the
evolution of the Universe during this transition and derive an
order-of-magnitude lower limit on the abundance of electroweak baryons in the
absence of a cosmological asymmetry, which suggests that such an asymmetry
would be necessary if the electroweak baryons are to provide the cosmological
density of dark matter. We revisit estimates of the corresponding
spin-independent dark matter scattering cross section, with a view to direct
detection experiments.Comment: 34 pages, 4 figures, additional references adde
The Health Informatics Trial Enhancement Project (HITE): Using routinely collected primary care data to identify potential participants for a depression trial
<p>Abstract</p> <p>Background</p> <p>Recruitment to clinical trials can be challenging. We identified anonymous potential participants to an existing pragmatic randomised controlled depression trial to assess the feasibility of using routinely collected data to identify potential trial participants. We discuss the strengths and limitations of this approach, assess its potential value, report challenges and ethical issues encountered.</p> <p>Methods</p> <p>Swansea University's Health Information Research Unit's Secure Anonymised Information Linkage (SAIL) database of routinely collected health records was interrogated, using Structured Query Language (SQL). Read codes were used to create an algorithm of inclusion/exclusion criteria with which to identify suitable anonymous participants. Two independent clinicians rated the eligibility of the potential participants' identified. Inter-rater reliability was assessed using the kappa statistic and inter-class correlation.</p> <p>Results</p> <p>The study population (N = 37263) comprised all adults registered at five general practices in Swansea UK. Using the algorithm 867 anonymous potential participants were identified. The sensitivity and specificity results > 0.9 suggested a high degree of accuracy from the algorithm. The inter-rater reliability results indicated strong agreement between the confirming raters. The Intra Class Correlation Coefficient (Cronbach's Alpha) > 0.9, suggested excellent agreement and Kappa coefficient > 0.8; almost perfect agreement.</p> <p>Conclusions</p> <p>This proof of concept study showed that routinely collected primary care data can be used to identify potential participants for a pragmatic randomised controlled trial of folate augmentation of antidepressant therapy for the treatment of depression. Further work will be needed to assess generalisability to other conditions and settings and the inclusion of this approach to support Electronic Enhanced Recruitment (EER).</p
Advanced optical imaging in living embryos
Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis
Model independent constraints on leptoquarks from MU and TAU lepton rare processes
We perform a model independent analysis so as to constrain the leptoquark
(LQ) models from negative searches for , decays
(and analogous processes in the sector), and coherent conversion
in nuclei. We considerably improve some constraints obtained by analyses known
in the literature, analyses which we show have by far underestimated the LQ
contributions to the . In particular we find that the coherent
conversion in nuclei mediated by the photon--conversion mechanism and
the decay are golden plates where the flavor changing leptoquark
couplings, involving the second and third quark generations, can be strongly
constrained. This is due to the fact that these processes get the enhancements
by large terms which are induced by the so-called
``photon-penguin'' diagrams. These enhancements, which produce a mild GIM
suppression in the amplitudes, have not been taken into account in the previous
analyses. We show that the decay can set weaker constraints
on the LQ models and this is because its amplitude is strongly GIM suppressed
by the terms of order . We also present the results for the
corresponding constraints in the sector. Finally the prospects of the
future muon experiments for the improvement of the present bounds are analyzed
and discussed.Comment: LaTeX, 27 pages, 3 figures, new paragraph added in section 4,
corrected some typos. To appear in Phys. Rev.
Pediatric interventional radiography equipment: safety considerations
This paper discusses pediatric image quality and radiation dose considerations in state-of-the-art fluoroscopic imaging equipment. Although most fluoroscopes are capable of automatically providing good image quality on infants, toddlers, and small children, excessive radiation dose levels can result from design deficiencies of the imaging device or inappropriate configuration of the equipment’s capabilities when imaging small body parts. Important design features and setup choices at installation and during the clinical use of the imaging device can improve image quality and reduce radiation exposure levels in pediatric patients. Pediatric radiologists and cardiologists, with the help of medical physicists, need to understand the issues involved in creating good image quality at reasonable pediatric patient doses. The control of radiographic technique factors by the generator of the imaging device must provide a large dynamic range of mAs values per exposure pulse during both fluoroscopy and image recording as a function of patient girth, which is the thickness of the patient in the posterior–anterior projection at the umbilicus (less than 10 cm to greater than 30 cm). The range of pulse widths must be limited to less than 10 ms in children to properly freeze patient motion. Variable rate pulsed fluoroscopy can be leveraged to reduce radiation dose to the patient and improve image quality. Three focal spots with nominal sizes of 0.3 mm to 1 mm are necessary on the pediatric unit. A second, lateral imaging plane might be necessary because of the child’s limited tolerance of contrast medium. Spectral and spatial beam shaping can improve image quality while reducing the radiation dose. Finally, the level of entrance exposure to the image receptor of the fluoroscope as a function of operator choices, of added filter thickness, of selected pulse rate, of the selected field-of-view and of the patient girth all must be addressed at installation
Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT)
Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG)n. Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity
- …