103 research outputs found

    Imaginary Chemical Potential Approach for the Pseudo-Critical Line in the QCD Phase Diagram with Clover-Improved Wilson Fermions

    Get PDF
    The QCD phase diagram is studied in the lattice QCD simulation with the imaginary chemical potential approach. We employ a clover-improved Wilson fermion action of two-flavors and a renormalization-group improved gauge action, and perform the simulation at an intermediate quark mass on a 83×48^3\times 4 lattice. The QCD phase diagram in the imaginary chemical potential μI\mu_I region is investigated by performing the simulation for more than 150 points on the (β,μI)(\beta,\mu_I) plane. We find that the Roberge-Weiss phase transition at μI/T=π/3\mu_I/T=\pi/3 is first order and its endpoint is second order, which are identified by the phase of the Polyakov loop. We determine the pseudo-critical line from the susceptibility of the Polyakov loop modulus. We find a clear deviation from a linear dependence of the pseudo-critical line on μI2\mu_I^2.Comment: 10 pages, 20 figures, 3 tables. Revtex4. References are added and, discussions are sharpene

    Wilson Fermion Determinant in Lattice QCD

    Get PDF
    We present a formula for reducing the rank of Wilson fermions from 4NcNxNyNzNt4 N_c N_x N_y N_z N_t to 4NcNxNyNz4 N_c N_x N_y N_z keeping the value of its determinant. We analyse eigenvalues of a reduced matrix and coefficients CnC_n in the fugacity expansion of the fermion determinant nCn(exp(μ/T))n\sum_n C_n (\exp(\mu/T))^n, which play an important role in the canonical formulation, using lattice QCD configurations on a 444^4 lattice. Numerically, logCn\log |C_n| varies as NxNyNzN_x N_y N_z, and goes easily over the standard numerical range; We give a simple cure for that. The phase of CnC_n correlates with the distribution of the Polyakov loop in the complex plain. These results lay the groundwork for future finite density calculations in lattice QCD.Comment: 20 pages, 2 tables, 32 figure
    corecore