3 research outputs found

    Cardiac Autonomic Nervous System Activity during Slow Breathing in Supine Position

    No full text
    The purpose of this study is to clarify cardiac autonomic nervous system activity during slow breathing exercises in a supine position. Eighteen healthy young males were participated. Heart rate variability was measured for 5 minutes at rest, 5 minutes at slow breathing, and then 5 minutes at rest. As a result, the LF/HF ratio increased with slow breathing, but HF value did not change. We suggest that the increased LF/HF ratio may be due to increased airway resistance. Cardiac autonomic nervous system activity during slow breathing in the supine position was revealed

    Characteristics of organic light-emitting devices consisting of dye-doped spin crossover complex films

    Get PDF
    Two organic light-emitting devices (OLEDs) were fabricated to investigate the mechanism of electroluminescence (EL) switching accompanying the spin transition of [Fe(dpp)2](BF4)2 (dpp = 2,6-di(pyrazol-1-yl)pyridine) observed in an OLED with the structure indium tin oxide (ITO)/[Fe(dpp)2](BF4)2:chlorophyll a/Al, consisting of a chlorophyll a (Chl a)-doped [Fe(dpp)2](BF4)2 film. One OLED consisted of poly(N-vinylcarbazole) (PVK) between an ITO electrode and the active layer, and the other contained the electron transporting dye Nile Red (NR) as an emitting dopant material instead of the hole transporting Chl a. In both devices ITO/PVK/[Fe(dpp)2](BF4)2:Chl a/Al and ITO/[Fe(dpp)2](BF4)2:NR/Al, EL emission from the dye compound was observed, irrespective of the spin state of [Fe(dpp)2](BF4)2. It was determined that the EL switching accompanying the spin transition was dominated by a change in the molecular orbital level concerning electron transport in [Fe(dpp)2](BF4)2
    corecore