27 research outputs found

    Therapeutic Approaches for Targeting Hypoxia- Inducible Factor in Multiple Myeloma

    Get PDF

    Recent progress of JAK inhibitors for hematological disorders

    No full text
    AbstractJAK inhibitors are important therapeutic options for hematological disorders, especially myeloproliferative neoplasms. Ruxolitinib, the first JAK inhibitor approved for clinical use, improves splenomegaly and ameliorates constitutional symptoms in both myelofibrosis and polycythemia vera patients. Ruxolitinib is also useful for controlling hematocrit levels in polycythemia vera patients who were inadequately controlled by conventional therapies. Furthermore, pretransplantation use of ruxolitinib may improve the outcome of allo-hematopoietic stem cell transplantation in myelofibrosis. In contrast to these clinical merits, evidence of the disease-modifying action of ruxolitinib, i.e., reduction of malignant clones or improvement of bone marrow pathological findings, is limited, and many myelofibrosis patients discontinued ruxolitinib due to adverse events or disease progression. To overcome these limitations of ruxolitinib, several new types of JAK inhibitors have been developed. Among them, fedratinib was proven to provide clinical merits even in patients who were resistant or intolerant to ruxolitinib. Pacritinib and momelotinib have shown merits for myelofibrosis patients with thrombocytopenia or anemia, respectively. In addition to treatment for myeloproliferative neoplasms, recent studies have demonstrated that JAK inhibitors are novel and attractive therapeutic options for corticosteroid-refractory acute as well as chronic graft versus host disease

    Thrombopoietin Induces HOXA9 Nuclear Transport in Immature Hematopoietic Cells: Potential Mechanism by Which the Hormone Favorably Affects Hematopoietic Stem Cells

    No full text
    Members of the homeobox family of transcription factors are major regulators of hematopoiesis. Overexpression of either HOXB4 or HOXA9 in primitive marrow cells enhances the expansion of hematopoietic stem cells (HSCs). However, little is known of how expression or function of these proteins is regulated during hematopoiesis under physiological conditions. In our previous studies we demonstrated that thrombopoietin (TPO) enhances levels of HOXB4 mRNA in primitive hematopoietic cells (K. Kirito, N. Fox, and K. Kaushansky, Blood 102:3172-3178, 2003). To extend our studies, we investigated the effects of TPO on HOXA9 in this same cell population. Although overall levels of the transcription factor were not affected, we found that TPO induced the nuclear import of HOXA9 both in UT-7/TPO cells and in primitive Sca-1(+)/c-kit(+)/Gr-1(−) hematopoietic cells in a mitogen-activated protein kinase-dependent fashion. TPO also controlled MEIS1 expression at mRNA levels, at least in part due to phosphatidylinositol 3-kinase activation. Collectively, TPO modulates the function of HOXA9 by leading to its nuclear translocation, likely mediated by effects on its partner protein MEIS1, and potentially due to two newly identified nuclear localization signals. Our data suggest that TPO controls HSC development through the regulation of multiple members of the Hox family of transcription factors through multiple mechanisms

    Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1α

    No full text
    Thrombopoietin (TPO), the primary regulator of thrombopoiesis, is also an important, nonredundant mediator of hematopoietic stem cell (HSC) development. For example, following transplantation, HSC expansion is approximately 15-fold more robust in normal than in Tpo-/- mice. Vascular endothelial growth factor (VEGF) also plays an important role in HSC development, where it acts in an intracellular autocrine fashion to promote cell survival. Thus, we tested the hypothesis that TPO affects the autocrine production of VEGF to account for its favorable effects on HSCs. We found that VEGF transcripts are reduced in purified sca-1+/c-kit+/Gr-1- marrow cells derived from Tpo-/- mice and that TPO induces VEGF transcripts in these primitive hematopoietic cells. Additional studies determined that TPO induces VEGF expression by increasing the level of its primary transcription factor, hypoxia-inducible factor 1α (HIF-1α), by enhancing its protein stability. Moreover, VEGF expression is important for the TPO effect on primitive hematopoietic cells because blockade of the VEGF receptor with a specific inhibitor substantially blunts TPO-induced growth of single sca-1+/c-kit+/Gr-1- marrow cells in serum-free cultures. Along with previous findings that TPO affects Hox transcription factors that regulate HSC proliferation, these data contribute to our growing understanding of the mechanisms by which a hormone can influence stem cell development
    corecore