304 research outputs found

    Hidden particle production at the ILC

    Full text link
    In a class of new physics models, new physics sector is completely or partly hidden, namely, singlet under the Standard Model (SM) gauge group. Hidden fields included in such new physics models communicate with the Standard Model sector through higher dimensional operators. If a cutoff lies in the TeV range, such hidden fields can be produced at future colliders. We consider a scalar filed as an example of the hidden fields. Collider phenomenology on this hidden scalar is similar to that of the SM Higgs boson, but there are several features quite different from those of the Higgs boson. We investigate productions of the hidden scalar at the International Linear Collider (ILC) and study the feasibility of its measurements, in particular, how well the ILC distinguishes the scalar from the Higgs boson, through realistic Monte Carlo simulations.Comment: the version to be published in PR

    Combined analysis of microstructures within an annual ring of Douglas fir (Pseudotsuga menziesii) by dynamic mechanical analysis and small angle X-ray scattering

    Get PDF
    Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements of water-saturated wood of Douglas fir (Pseudotsuga menziesii) in the temperature range of 0 ℃ to 100 ℃ were focused to clarify microstructural changes within an annual ring. The following results were obtained. Thermal softening behavior caused by micro-Brownian motion of lignin was observed in both earlywood and latewood. The peaks of tanδ were found at around 95 ℃ for earlywood and at around 90 ℃ for latewood. These results suggested that the structures of lignin in the cell wall were different between earlywood and latewood. SAXS measurements of water-saturated earlywood and latewood in water were performed with precise temperature control. The scattering intensity increased with increasing temperature, indicating that the density of the matrix was reduced at higher temperature. One-dimensional SAXS intensity at the equator, which approximately represents cellulose microfibrils arrangement in the matrix, was intensively analyzed using the WoodSAS model. The result of this model fitting showed that the cellulose microfibril diameter of latewood was higher than that of earlywood. In addition, the value of interfibrillar distance decreased monotonically in the earlywood, while it decreased rapidly in the latewood from 60 ℃ to 90 ℃. The changes in the cellulose microfibril (CMF) diameter and the interfibrillar distance with increasing temperature between earlywood and latewood by SAXS measurement were different. The differences in CMF diameter and inter-fibril distance between earlywood and latewood measured by SAXS also support the hypothesis that lignin structure differs between earlywood and latewood based on the results of DMA measurements

    Highly sensitive spectral interferometric fourwave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy

    Full text link
    Isobe K., Ozeki Y., Kawasumi T., et al. Highly sensitive spectral interferometric fourwave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy. Optics Express, 14, 23, 11204. https://doi.org/10.1364/OE.14.011204

    Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts

    Get PDF
    AbstractGM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA, HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses

    Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts

    Get PDF
    GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA, HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses

    Structure of the far-red light utilizing photosystem I of Acaryochloris marina

    Get PDF
    赤外光駆動型光合成をクライオ電顕で捉えることに成功 --低いエネルギーで通常の光化学反応が駆動される仕組み--. 京都大学プレスリリース. 2021-04-21.Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d′. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis
    corecore