22 research outputs found

    Impact of a Booklet about Diabetes Genetic Susceptibility and Its Prevention on Attitudes towards Prevention and Perceived Behavioral Change in Patients with Type 2 Diabetes and Their Offspring

    Get PDF
    Background. Offspring of type 2 diabetic patients are at a high risk of type 2 diabetes. Information on diabetes genetic susceptibility and prevention should be supplied to the offspring. Methods. A six-page booklet on diabetes genetic susceptibility and prevention was distributed to 173 patients who ere ordered to hand it to their offspring. The patients answered a self-administered questionnaire on booklet delivery and attitudinal and behavioral changes toward diabetes and its prevention in themselves and their offspring. Results. Valid responses were obtained from 130 patients. Forty-nine patients had actually handed the booklet. Booklet induces more relief than anxiety. From the patient's view, favorable attitudinal and/or behavioral changes occurred in more than half of the offspring who were delivered the booklet. Conclusion. The booklet worked effectively on attitudes and behaviors toward diabetes and its prevention both in patients and their offspring. However, the effectiveness of patients as information deliverers was limited

    Seroprevalence of IgA and IgM antibodies to Bordetella pertussis in healthy Japanese donors: Assessment for the serological diagnosis of pertussis.

    No full text
    Pertussis is a human respiratory infection caused by the gram-negative bacterium, Bordetella pertussis. To evaluate the pertussis burden and vaccine efficacy, diagnosis and epidemiological surveillance should be based on accurate and valid diagnostic methods. Recently, the serodiagnostic tests Novagnost Bordetella pertussis IgA and IgM were approved in Japan for pertussis diagnostics. Although the anti-pertussis toxin (PT) IgG assay has been used for pertussis diagnosis worldwide, little is known about the anti-B. pertussis IgA and IgM assays. In this study, serum samples from 460 healthy donors were examined to determine the seroprevalence of anti-B. pertussis IgA and IgM in a Japanese population, and its correlation with donor age. Our data demonstrated that anti-B. pertussis IgA and IgM are positively and negatively correlated with age (r = 0.27, r = -0.37; P < 0.001, respectively). Age-specific analysis revealed high titers of anti-B. pertussis IgA in adults (46-50 years), while anti-B. pertussis IgM titers were high in schoolchildren (6-10, 11-15 years). When applying the arbitrary cut-off values for these ages, 17.6% and 39.5% of healthy donors were interpreted as pertussis-positive or indeterminate with anti-B. pertussis IgA (46-50 years) and IgM (11-15 years) titers, respectively. Overall, our findings indicated that the Novagnost Bordetella pertussis IgA and IgM testing could be greatly affected by subject age, limiting its value for pertussis diagnosis

    Characterization of a Novel Plasmid-Mediated Cephalosporinase (CMY-9) and Its Genetic Environment in an Escherichia coli Clinical Isolate

    No full text
    An Escherichia coli strain, HKYM68, which showed resistance to broad-spectrum cephalosporins was isolated from a sputum specimen in Japan. The high-level resistance of the strain to ceftazidime, cefpirome, and moxalactam was carried by a self-transferable plasmid. The β-lactamase gene responsible for the resistance was cloned and sequenced. The deduced amino acid sequence of this gene product, CMY-9, had a single amino acid substitution (E85D), the residue reported to be part of the recognition site for the R1 side chain of β-lactams, compared with the amino acid sequence of CMY-8 and also had 78% identity with the amino acid sequence of CepH, a chromosomal cephalosporinase of Aeromonas hydrophila. A sul1-type class 1 integron containing an aacA1-orfG gene cassette was identified upstream of bla(CMY-9) and ended with a truncated 3′ conserved segment. The following 2.1 kb was almost identical to the common region of integrons In6 and In7 and the integron of pSAL-1, except that orf513 encoding a putative transposase was identified instead of orf341 due to addition of a single nucleotide. bla(CMY-9) was closely located downstream of the end of the common region. These observations are indicative of the exogenous derivation of bla(CMY-9) from some environmental microorganisms such as aeromonads

    Genetic Environments of the rmtA Gene in Pseudomonas aeruginosa Clinical Isolates

    No full text
    Nine Pseudomonas aeruginosa strains showing very high levels of resistance to various aminoglycosides have been isolated from clinical specimens in seven separate Japanese hospitals in five prefectures since 1997. These strains harbor the newly identified 16S rRNA methylase gene (rmtA). When an rmtA gene probe was hybridized with genomic DNAs of the nine strains digested with EcoRI, two distinct patterns were observed. The 11.1- and 15.8-kb regions containing the rmtA genes of strains AR-2 and AR-11, respectively, were sequenced and compared. In strain AR-2, a transposase gene-like sequence (sequence 1) and a probable tRNA ribosyltransferase gene (orfA) were located upstream of rmtA, and a Na(+)/H(+) antiporter gene-like sequence (sequence 2) was identified downstream of rmtA. This 6.2-kbp insert (the rmtA locus) was flanked by 262-bp κγ elements. Part of the orfQ gene adjacent to an inverted repeat was found outside of the rmtA locus. In strain AR-11, the rmtA gene and sequence 2 were found, but the 5′ end of the orfA gene was truncated and replaced with IS6100. An orfQ-orfI region was present on each side of the rmtA gene in strain AR-11. The G+C content of the rmtA gene was about 55%, and since the newly identified rmtA gene may well be mediated by some mobile genetic elements such as Tn5041, further dissemination of the rmtA gene could become an actual clinical problem in the near future

    Plasmid-Mediated 16S rRNA Methylase in Serratia marcescens Conferring High-Level Resistance to Aminoglycosides

    No full text
    Serratia marcescens S-95, which displayed an unusually high degree of resistance to aminoglycosides, including kanamycins and gentamicins, was isolated in 2002 from a patient in Japan. The resistance was mediated by a large plasmid which was nonconjugative but transferable to an Escherichia coli recipient by transformation. The gene responsible for the aminoglycoside resistance was cloned and sequenced. The deduced amino acid sequence of the resistance gene shared 82% identity with RmtA, which was recently identified as 16S rRNA methylase conferring high-level aminoglycoside resistance in Pseudomonas aeruginosa. Histidine-tagged recombinant protein showed methylation activity against E. coli 16S rRNA. The novel aminoglycoside resistance gene was therefore designated rmtB. The genetic environment of rmtB was further investigated. The sequence immediately upstream of rmtB contained the right end of transposon Tn3, including bla(TEM), while an open reading frame possibly encoding a transposase was identified downstream of the gene. This is the first report describing 16S rRNA methylase production in S. marcescens. The aminoglycoside resistance mechanism mediated by production of 16S rRNA methylase and subsequent ribosomal protection used to be confined to aminoglycoside-producing actinomycetes. However, it is now identified among pathogenic bacteria, including Enterobacteriaceae and P. aeruginosa in Japan. This is a cause for concern since other treatment options are often limited in patients requiring highly potent aminoglycosides such as amikacin and tobramycin
    corecore