148 research outputs found

    A Molecular Mechanism for Abnormal Prion Protein Accumulation

    Get PDF
    A fundamental event in the pathogenesis of prion disease is the conversion of cellular prion protein into an abnormally folded isoform (PrPSc), which is the infectious causative agent of disease. With progression of disease, PrPSc is replicated and excessively accumulated in most cases. However, the molecular mechanism for excessive accumulation of PrPSc is not well understood. Recently, Sortilin, a member of the VPS10P domain receptor family, has been identified as a sorting receptor that directs prion protein (PrP) to the lysosomal degradation pathway. Moreover, it has been shown that prion infection impairs Sortilin function, resulting in delayed PrPSc degradation. In this chapter, we explain the mechanisms for PrP trafficking into the lysosomal degradation pathway mediated by Sortilin and overaccumulation of PrPSc caused by Sortilin dysfunction

    Prion accumulation via sortilin dysfunction

    Get PDF
    Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons

    T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis

    Get PDF
    This report shows that highly self-reactive T cells produced in mice as a result of genetically altered thymic T cell selection spontaneously differentiate into interleukin (IL)-17–secreting CD4+ helper T (Th) cells (Th17 cells), which mediate an autoimmune arthritis that clinically and immunologically resembles rheumatoid arthritis (RA). The thymus-produced self-reactive T cells, which become activated in the periphery via recognition of major histocompatibility complex/self-peptide complexes, stimulate antigen-presenting cells (APCs) to secrete IL-6. APC-derived IL-6, together with T cell–derived IL-6, drives naive self-reactive T cells to differentiate into arthritogenic Th17 cells. Deficiency of either IL-17 or IL-6 completely inhibits arthritis development, whereas interferon (IFN)-γ deficiency exacerbates it. The generation, differentiation, and persistence of arthritogenic Th17 cells per se are, however, insufficient for producing overt autoimmune arthritis. Yet overt disease is precipitated by further expansion and activation of autoimmune Th17 cells, for example, via IFN-γ deficiency, homeostatic proliferation, or stimulation of innate immunity by microbial products. Thus, a genetically determined T cell self-reactivity forms a cytokine milieu that facilitates preferential differentiation of self-reactive T cells into Th17 cells. Extrinsic or intrinsic stimuli further expand these cells, thereby triggering autoimmune disease. Intervention in these events at cellular and molecular levels is useful to treat and prevent autoimmune disease, in particular RA

    Neurotropic influenza A virus infection causes prion protein misfolding into infectious prions in neuroblastoma cells

    Get PDF
    Misfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions

    Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model

    Get PDF
    This report shows that interleukin (IL) 17–producing T helper type 17 (Th17) cells predominantly express CC chemokine receptor (CCR) 6 in an animal model of rheumatoid arthritis (RA). Th17 cells induced in vivo in normal mice via homeostatic proliferation similarly express CCR6, whereas those inducible in vitro by transforming growth factor β and IL-6 additionally need IL-1 and neutralization of interferon (IFN) γ and IL-4 for CCR6 expression. Forced expression of RORγt, a key transcription factor for Th17 cell differentiation, induces not only IL-17 but also CCR6 in naive T cells. Furthermore, Th17 cells produce CCL20, the known ligand for CCR6. Synoviocytes from arthritic joints of mice and humans also produce a large amount of CCL20, with a significant correlation (P = 0.014) between the amounts of IL-17 and CCL20 in RA joints. The CCL20 production by synoviocytes is augmented in vitro by IL-1β, IL-17, or tumor necrosis factor α, and is suppressed by IFN-γ or IL-4. Administration of blocking anti-CCR6 monoclonal antibody substantially inhibits mouse arthritis. Thus, the joint cytokine milieu formed by T cells and synovial cells controls the production of CCL20 and, consequently, the recruitment of CCR6+ arthritogenic Th17 cells to the inflamed joints. These results indicate that CCR6 expression contributes to Th17 cell function in autoimmune disease, especially in autoimmune arthritis such as RA

    Phospholipase C Produced by Clostridium botulinum Types C and D:Comparison of Gene, Enzymatic, and Biological Activities with Those of Clostridium perfringens Alpha-toxin

    Get PDF
    Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs), the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival

    Ethanolamine Is a New Anti-Prion Compound

    Get PDF
    Prion diseases are a group of fatal neurodegenerative disorders caused by accumulation of proteinaceous infectious particles, or prions, which mainly consist of the abnormally folded, amyloidogenic prion protein, designated PrPSc. PrPSc is produced through conformational conversion of the cellular isoform of prion protein, PrPC, in the brain. To date, no effective therapies for prion diseases have been developed. In this study, we incidentally noticed that mouse neuroblastoma N2a cells persistently infected with 22L scrapie prions, termed N2aC24L1-3 cells, reduced PrPSc levels when cultured in advanced Dulbecco’s modified eagle medium (DMEM) but not in classic DMEM. PrPC levels remained unchanged in prion-uninfected parent N2aC24 cells cultured in advanced DMEM. These results suggest that advanced DMEM may contain an anti-prion compound(s). We then successfully identified ethanolamine in advanced DMEM has an anti-prion activity. Ethanolamine reduced PrPSc levels in N2aC24L1-3 cells, but not PrPC levels in N2aC24 cells. Also, oral administration of ethanolamine through drinking water delayed prion disease in mice intracerebrally inoculated with RML scrapie prions. These results suggest that ethanolamine could be a new anti-prion compound

    Vaporized Hydrogen Peroxide and Ozone Gas Synergistically Reduce Prion Infectivity on Stainless Steel Wire

    Get PDF
    Prions are infectious agents causing prion diseases, which include Creutzfeldt–Jakob disease (CJD) in humans. Several cases have been reported to be transmitted through medical instruments that were used for preclinical CJD patients, raising public health concerns on iatrogenic transmissions of the disease. Since preclinical CJD patients are currently difficult to identify, medical instruments need to be adequately sterilized so as not to transmit the disease. In this study, we investigated the sterilizing activity of two oxidizing agents, ozone gas and vaporized hydrogen peroxide, against prions fixed on stainless steel wires using a mouse bioassay. Mice intracerebrally implanted with prion-contaminated stainless steel wires treated with ozone gas or vaporized hydrogen peroxide developed prion disease later than those implanted with control prion-contaminated stainless steel wires, indicating that ozone gas and vaporized hydrogen peroxide could reduce prion infectivity on wires. Incubation times were further elongated in mice implanted with prion-contaminated stainless steel wires treated with ozone gas-mixed vaporized hydrogen peroxide, indicating that ozone gas mixed with vaporized hydrogen peroxide reduces prions on these wires more potently than ozone gas or vaporized hydrogen peroxide. These results suggest that ozone gas mixed with vaporized hydrogen peroxide might be more useful for prion sterilization than ozone gas or vaporized hydrogen peroxide alone

    Synthesis of yellow and red fluorescent 1,3a,6a-triazapentalenes and the theoretical investigation of their optical properties

    Get PDF
    To expand the originally developed fluorescent 1,3a,6a-triazapentalenes as fluorescent labelling reagents, the fluorescence wavelength of the 1,3a,6a-triazapentalenes was extended to the red color region. Based on the noteworthy correlation of the fluorescence wavelength with the inductive effect of the 2-substituent, electron-deficient 2-(2-cyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene and 2-(2,6-dicyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene were synthesized. The former exhibited yellow fluorescence and the latter exhibited red fluorescence, and both compounds exhibited large Stokes shifts, and the 1,3a,6a-triazapentalene system enabled the same fluorescent chromophore to cover the entire region of visible wavelengths. The potential applications of the 1,3a,6a-triazapentalenes as fluorescent probes in the fields of the life sciences were investigated, and the 1,3a,6a-triazapentalene system was clearly proven to be useful as a fluorescent reagent for live cell imaging. Quantum chemical calculations were performed to investigate the optical properties of the 1,3a,6a-triazapentalenes. These calculations revealed that the excitation involves a significant charge-transfer from the 1,3a,6a-triazapentalene skeleton to the 2-substituent. The calculated absorption and fluorescence wavelengths showed a good correlation with the experimental ones, and thus the system could enable the theoretical design of substituents with the desired optical properties

    A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice

    Get PDF
    A combination of genetic and environmental factors can cause autoimmune disease in animals. SKG mice, which are genetically prone to develop autoimmune arthritis, fail to develop the disease under a microbially clean condition, despite active thymic production of arthritogenic autoimmune T cells and their persistence in the periphery. However, in the clean environment, a single intraperitoneal injection of zymosan, a crude fungal β-glucan, or purified β-glucans such as curdlan and laminarin can trigger severe chronic arthritis in SKG mice, but only transient arthritis in normal mice. Blockade of Dectin-1, a major β-glucan receptor, can prevent SKG arthritis triggered by β-glucans, which strongly activate dendritic cells in vitro in a Dectin-1–dependent but Toll-like receptor-independent manner. Furthermore, antibiotic treatment against fungi can prevent SKG arthritis in an arthritis-prone microbial environment. Multiple injections of polyinosinic-polycytidylic acid double-stranded RNA also elicit mild arthritis in SKG mice. Thus, specific microbes, including fungi and viruses, may evoke autoimmune arthritis such as rheumatoid arthritis by stimulating innate immunity in individuals who harbor potentially arthritogenic autoimmune T cells as a result of genetic anomalies or variations
    • …
    corecore