7 research outputs found
Daylighting: appraisal at the early design stages
For a building design team concerned with the quality of the internal environment of buildings the percentage area of glazing on a building facade is one of the most useful criteria for judging the building envelope as a modifier of climate at early design stages since it is at the window that the various environmental parameters (heat, light and sound) remain only minimally modified.
The percentage area of glazing can be used to relate the numerous and often conflicting functions of the window such as the provision of daylight, summer time teperatures, sound insulation, energy efficiency and view satisfaction
On the influence of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices. A study based on the EN 15251 adaptive thermal comfort model in Athens, Greece
According to the Intergovernmental Panel on Climate Change the buildings sector has the largest mitigation potential for CO2 emissions. Especially in office buildings, where internal heat loads and a relatively high occupant density occur at the same time with solar heat gains, overheating has become a common problem. In Europe the adaptive thermal comfort model according to EN 15251 provides a method to evaluate thermal comfort in naturally ventilated buildings. However, especially in the context of the climate change and the occurrence of heat waves within the last decade, the question arises, how thermal comfort can be maintained without additional cooling, especially in warm climates. In this paper a parametric study for a typical cellular naturally ventilated office room has been conducted, using the building simulation software EnergyPlus. It is based on the Mediterranean climate of Athens, Greece. Adaptive thermal comfort is evaluated according to EN 15251. Variations refer to different building design priorities, and they consider the variability of occupant behaviour and internal heat loads by using an ideal and worst case scenario. The influence of heat waves is considered by comparing measured temperatures for an average and an exceptionally hot year within the last decade. Since the use of building controls for shading affects thermal as well as visual comfort, daylighting and view are evaluated as well. Conclusions are drawn regarding the influence and interaction of building design, occupants and heat waves on comfort and greenhouse gas emissions in naturally ventilated offices, and related optimisation potential.<br /