310 research outputs found

    Point of Care Diagnosis of Multiple Schistosome Parasites: Species-specific DNA Detection in Urine by Loop-mediated Isothermal Amplification (LAMP)

    Get PDF
    Schistosomes are easily transmitted and high chance of repeat infection, so if control strategies based on targeted mass drug administration (MDA) are to succeed it is essential to have a test that is sensitive, accurate and simple to use. It is known and regularly demonstrated that praziquantel does not always eliminate an infection so in spite of the successes of control programs a residual of the reservoir survives to re-infect snails. The issue of diagnostic sensitivity becomes more critical in the assessment of program effectiveness. While serology, such as antigen capture tests might improve sensitivity, it has been shown that the presence of species-specific DNA fragments will indicate, most effectively, the presence of active parasites. Polymerase chain reaction (PCR) can amplify and detect DNA from urine residue captured on Whatman No. 3 filter paper that is dried after filtration. Previously we have detected S. mansoni and S. haematobium parasite-specific small repeat DNA fragment from filtered urine on filter paper by PCR. In the current study, we assessed the efficacy of detection of 86 urine samples for either or both schistosome parasites by PCR and loop-mediated isothermal amplification (LAMP) that were collected from a low to moderate transmission area in Ghana. Two different DNA extraction methods, standard extraction kit and field usable LAMP-PURE kit were also evaluated by PCR and LAMP amplification. With S. haematobium LAMP amplification for both extractions showed similar sensitivity and specificity when compared with PCR amplification (100%) verified by gel electrophoresis. For S. mansoni sensitivity was highest for LAMP amplification (100%) for standard extraction than PCR and LAMP with LAMP-PURE (99% and 94%). The LAMP-PURE extraction produced false negatives, which require further investigation for this field usable extraction kit. Overall high positive and negative predictive values (90% − 100%) for both species demonstrated a highly robust approach. The LAMP approach is close to point of care use and equally sensitive and specific to detection of species-specific DNA by PCR. LAMP can be an effective means to detect low intensity infection due to its simplicity and minimal DNA extraction requirement. This will enhance the effectiveness of surveillance and MDA control programs of schistosomiasis

    Development by Design: Mitigating Wind Development's Impacts on Wildlife in Kansas

    Get PDF
    Wind energy, if improperly sited, can impact wildlife through direct mortality and habitat loss and fragmentation, in contrast to its environmental benefits in the areas of greenhouse gas, air quality, and water quality. Fortunately, risks to wildlife from wind energy may be alleviated through proper siting and mitigation offsets. Here we identify areas in Kansas where wind development is incompatible with conservation, areas where wind development may proceed but with compensatory mitigation for impacts, and areas where development could proceed without the need for compensatory mitigation. We demonstrate that approximately 10.3 million ha in Kansas (48 percent of the state) has the potential to provide 478 GW of installed capacity while still meeting conservation goals. Of this total, approximately 2.7 million ha would require no compensatory mitigation and could produce up to 125 GW of installed capacity. This is 1,648 percent higher than the level of wind development needed in Kansas by 2030 if the United States is to get 20 percent of its electricity from wind. Projects that avoid and offset impacts consistent with this analysis could be awarded “Green Certification.” Certification may help to expand and sustain the wind industry by facilitating the completion of individual projects sited to avoid sensitive areas and protecting the industry's reputation as an ecologically friendly source of electricity

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Distortion product otoacoustic emissions in children at school entry: A comparison with pure tone screening and tympanometry results

    Get PDF
    This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children

    Effect of ear canal pressure and age on wideband absorbance in young infants

    Get PDF
    Objective: The study investigated the effect of ear canal pressure and age on wideband absorbance (WBA) in healthy young infants. Design: Using a cross-sectional design, WBA at 0.25 to 8 kHz was obtained from infants as the ear canal pressure was swept from +200 to −300 daPa. Study sample: The participants included 29 newborns, 9 infants each at 1 and 4 months and 11 infants at 6 months of age who passed distortion product otoacoustic emissions test. Results: In general, negative-ear canal pressures reduced WBA across the frequency range, while positive-ear canal pressures resulted in reduced WBA from 0.25 to 2 kHz and above 4 kHz with an increase in absorbance between 2 and 3 kHz compared to WBA at ambient pressure. The variation in WBA below 0.5 kHz, as the pressure was varied, was the greatest in newborns. But, the variation was progressively reduced in older infants up to the age of 6 months, suggesting stiffening of the ear canal with age. Conclusions: Significant changes in WBA were observed as a function of pressure and age. In particular, developmental effects on WBA were evident during the first six months of life

    Improving Patient Satisfaction Through Engaging Patients in Their Care – A Nurse Led Project

    Get PDF
    https://scholarlycommons.baptisthealth.net/se-2022-smh-bpf/1011/thumbnail.jp

    Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Owen, K., Saeki, K., Warren, J. D., Bocconcelli, A., Wiley, D. N., Ohira, S., Bombosch, A., Toda, K., & Zitterbart, D. P. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Communications Biology, 4(1), (2021): 149, https://doi.org/10.1038/s42003-021-01668-3.Finding prey is essential to survival, with marine predators hypothesised to track chemicals such as dimethyl sulfide (DMS) while foraging. Many predators are attracted to artificially released DMS, and laboratory experiments have shown that zooplankton grazing on phytoplankton accelerates DMS release. However, whether natural DMS concentrations are useful for predators and correlated to areas of high prey biomass remains a fundamental knowledge gap. Here, we used concurrent hydroacoustic surveys and in situ DMS measurements to present evidence that zooplankton biomass is spatially correlated to natural DMS concentration in air and seawater. Using agent simulations, we also show that following gradients of DMS would lead zooplankton predators to areas of higher prey biomass than swimming randomly. Further understanding of the conditions and scales over which these gradients occur, and how they are used by predators, is essential to predicting the impact of future changes in the ocean on predator foraging success.Open Access funding enabled and organized by Projekt DEAL. This study was funded by the Herrington Fitch Family Foundation, by the Woods Hole Oceanographic Institution Joint Initiative Awards Fund from the Andrew W. Mellon Foundation and The President’s Investment Fund, and by KAKENHI, Grants-in-Aid for Basic Research (B) (Grant no. 16H04168) and Bilateral Programs Joint Research Projects (open partnership), both from the Japan Society for the Promotion of Science. The authors thank Mrs. Norio Hayashi, Takanori Nagahata, and Ms. Mihoko Asano (Mitsubishi Chemical Analytech Co.) for their support with the SGV-CL device. The research was conducted under Scientific Research Permit number 18059, issued by the National Oceanic and Atmospheric Administration under the Marine Mammal Protection Act
    corecore