19 research outputs found

    Impact of stressing a pen mate on physiological responses of growing pigs

    Get PDF
    Crossbred barrows and gilts (n = 36), weighing 16.59 ± 2.1 kg, were used to test the effects of stressing a pen mate on the physiological responses of growing pigs. Pigs were randomly allotted to 6 groups after stratifying according to gender, litter origin, and body weight. Dominance order was determined within each group, and 1 to 3 d prior to the stress treatment the most- and leastdominant pigs within a group were fitted with indwelling catheters in their vena cavas. Over 3 d, groups were either: 1) isolated from audile and visual contact with stressed pigs in a separate room (non-stressed control); 2) separated by a curtain from visual contact with stressed pigs; or 3) allowed to maintain audile and visual contact with stressed pigs. Blood samples were collected 30, 15, and 0 min before exposure to the stressor (snout-snare) treatment and again at 1, 2, 3, 4, 5, 7.5, 10, 15, 20, 25, and 30 min after stressor application. Serum cortisol and plasma glucose, lactate, and nonesterified fatty acids (NEFA) concentrations were measured. There were no treatment × sampling-time interactions (P \u3e 0.17) for concentrations of cortisol, glucose, lactate or NEFA, nor were these metabolites affected by stressor treatment (P \u3e 0.42). Humoral measures of the stress response were not affected by visual and/or audile contact with pen mates undergoing a stressful event

    Effects of grain by-products as supplements for stocker cattle grazing bermudagrass

    Get PDF
    Two experiments were conducted to compare corn, dried distillers’ grains (DDG), and pelleted soybean hulls (SH) as supplements for cattle grazing bermudagrass. In Exp. 1, 66 crossbred steers (306 ± 3.2 kg) were stratified by weight and allotted randomly to six 2.4-ha bermudagrass pastures for a 107-d study. One of three supplement treatments (corn, DDG, or SH) was assigned randomly to each pasture group and was offered at 0.5% (as fed) of body weight. Calves were weighed at 28-d intervals and supplement was adjusted after each weigh period. In Exp. 2, five ruminally cannulated steers grazed bermudagrass pasture and were individually fed supplements (corn, DDG, or SH) at 0.5% of body weight in a 3 x 3 replicated, incomplete Latin-square design with a 14-d adaptation and a 5-d sampling period. In Exp. 1, supplementation with DDG and corn increased (P \u3c 0.04) the average daily gain compared to supplementation with SH (0.89, 0.87, and 0.74 kg for DDG, corn, and SH, respectively). In Exp. 2, in situ dry-matter-disappearance kinetic measures of bermudagrass were not affected by type of supplementation. The potential extent of digestion for DDG (93%) was lower than for corn (97%, P = 0.01) and SH (96%, P = 0.06). Supplementation with corn or DDG at 0.5% of body weight improved the gain of stocker cattle grazing bermudagrass compared to supplementation with SH, but these differences were not explained by differences in bermudagrass degradation kinetic

    Level and source of supplemental selenium for beef steers

    Get PDF
    Selenium (Se) is deficient in many Arkansas soils; therefore, an experiment was conducted on steers to evaluate the effects of two supplemental Se sources on performance, blood metabolites, and immune function. Thirty Angus-crossbred steers were blocked by weight and assigned within block to one of 15 pens (two steers/pen). Pens were assigned randomly within blocks to one of three dietary treatments consisting of a corn-soybean meal supplement devoid of supplemental Se (negative control, NC) or corn-soybean meal supplements providing 1.7 mg supplemental Se/d as sodium selenite (inorganic Se, ISe) or as Se yeast (organic Se, OSe). Steers were offered fescue hay to allow for approximately 10% refusals, and 1.1 kg/d (as fed basis) of the appropriate grain supplement. Level and source of supplemental Se did not affect average daily gain for the 105-d trial. By d 42, steers fed both sources of supplemental Se had greater blood Se concentrations than those fed the NC. On d 63 and 84, blood Se concentrations differed among all dietary treatments (NC \u3c ISe \u3c OSe), and on d 105 steers fed both sources of supplemental Se had greater blood Se concentrations than NC. Antibody response to vaccination for bovine respiratory viruses, or in vitro lymphocyte blastogenesis did not differ among steers fed the different diets. Both sources of supplemental Se increased blood Se concentrations, the organic source more rapidly than the inorganic source; however, Se level and source had minimal effects on immune function of weaned beef steers

    Isolated Rearing at Lactation Increases Gut Microbial Diversity and Post-weaning Performance in Pigs

    Get PDF
    Environment and diet are two major factors affecting the human gut microbiome. In this study, we used a pig model to determine the impact of these two factors during lactation on the gut microbiome, immune system, and growth performance. We assigned 80 4-day-old pigs from 20 sows to two rearing strategies at lactation: conventional rearing on sow’s milk (SR) or isolated rearing on milk replacer supplemented with solid feed starting on day 10 (IR). At weaning (day 21), SR and IR piglets were co-mingled (10 pens of 4 piglets/pen) and fed the same corn-soybean meal-dried distiller grain with solubles- and antibiotic-free diets for eight feeding phase regimes. Fecal samples were collected on day 21, 62, and 78 for next-generation sequencing of the V4 hypervariable region of the bacterial 16S rRNA gene. Results indicate that IR significantly increased swine microbial diversity and changed the microbiome structure at day 21. Such changes diminished after the two piglet groups were co-mingled and fed the same diet. Post-weaning growth performance also improved in IR piglets. Toward the end of the nursery period (NP), IR piglets had greater average daily gain (0.49 vs. 0.41 kg/d; P < 0.01) and average daily feed intake (0.61 vs. 0.59 kg/d; P < 0.01) but lower feed efficiency (0.64 vs. 0.68; P = 0.05). Consequently, IR piglets were heavier by 2.9 kg (P < 0.01) at the end of NP, and by 4.1 kg (P = 0.08) at market age compared to SR piglets. Interestingly, pigs from the two groups had similar lean tissue percentage. Random forest analysis showed that members of Leuconostoc and Lactococcus best differentiated the IR and SR piglets at weaning (day 21), were negatively correlated with levels of Foxp3 regulatory T cell populations on day 20, and positively correlated with post-weaning growth performance. Our results suggest that rearing strategies may be managed so as to accelerate early-life establishment of the swine gut microbiome to enhance growth performance in piglets

    Isolated rearing at lactation increases gut microbial diversity and post-weaning performance in pigs

    No full text
    Environment and diet are two major factors affecting the human gut microbiome. In this study, we used a pig model to determine the impact of these two factors during lactation on the gut microbiome, immune system, and growth performance. We assigned 80 4-day-old pigs from 20 sows to two rearing strategies at lactation: conventional rearing on sow’s milk (SR) or isolated rearing on milk replacer supplemented with solid feed starting on day 10 (IR). At weaning (day 21), SR and IR piglets were co-mingled (10 pens of 4 piglets/pen) and fed the same corn-soybean meal-dried distiller grain with solubles- and antibiotic-free diets for eight feeding phase regimes. Fecal samples were collected on day 21, 62, and 78 for next-generation sequencing of the V4 hypervariable region of the bacterial 16S rRNA gene. Results indicate that IR significantly increased swine microbial diversity and changed the microbiome structure at day 21. Such changes diminished after the two piglet groups were co-mingled and fed the same diet. Post-weaning growth performance also improved in IR piglets. Toward the end of the nursery period (NP), IR piglets had greater average daily gain (0.49 vs. 0.41 kg/d; P \u3c 0.01) and average daily feed intake (0.61 vs. 0.59 kg/d; P \u3c 0.01) but lower feed efficiency (0.64 vs. 0.68; P = 0.05). Consequently, IR piglets were heavier by 2.9 kg (P \u3c 0.01) at the end of NP, and by 4.1 kg (P = 0.08) at market age compared to SR piglets. Interestingly, pigs from the two groups had similar lean tissue percentage. Random forest analysis showed that members of Leuconostoc and Lactococcus best differentiated the IR and SR piglets at weaning (day 21), were negatively correlated with levels of Foxp3 regulatory T cell populations on day 20, and positively correlated with post-weaning growth performance. Our results suggest that rearing strategies may be managed so as to accelerate early-life establishment of the swine gut microbiome to enhance growth performance in piglets

    Call to restrict neonicotinoids

    Get PDF
    On 28 April 2018 the European Parliament voted for a complete and permanent ban on all outdoor uses of the three most commonly used neonicotinoid pesticides. With the partial exception of the state of Ontario, Canada, governments elsewhere have failed to take action. Below is a letter, signed by 232 scientists from around the world, urgently calling for global action by policy makers to address this issue
    corecore