21 research outputs found

    Role of turbulent kinetic energy modulation by particle–fluid interaction in sediment pick-up

    No full text
    Reliable prediction of the erosion rate of sediment beds is important for many applications in coastal and river engineering. Theoretical understanding of empirically derived scaling relations is still lacking. This applies in particular for the scaling anomaly between low and high Shields number conditions. In this work, the erosion process is studied from the perspective of the phase-averaged turbulent kinetic energy (TKE) equations. The multi-phase TKE equations are written in a form that allows for a direct comparison with the TKE equation that appears for a stratified single-phase flow under the Boussinesq approximation. This reveals that next to buoyancy destruction, several other TKE modulation mechanisms become important at high Shields numbers and concentrations. Two scaling laws are derived for both moderate and high Shields numbers, and are tested against a wide range of experimental data.Offshore and Dredging EngineeringMulti Phase System

    Suspended pipeflow with openfoam

    No full text
    In dredging applications, deep sea mining and land reclamation projects typically large amounts of sediments are transported through pipes in the form of hyper concentrated (40% sediment or more) sediment-water mixtures or slurry. These slurries can flow at three different regimes. 1: fully suspended (homogeneous and stratified) 2: partially suspended with a sliding bed 3: partially suspended with a fixed bed. At the moment it is hard to predict the transport regime, the volume flux of particles and the pressure drop (friction factor) of these slurries within these regimes. The goal is to establish a model 3D continuum model that is able to predict the aforementioned aspects of slurry flow in a wide range of slurry flow conditions. In this paper it is investigated how well an existing CFD-model is able to model velocity and concentration profiles of suspended sediment in a pipeline. The CFD-model that is used is TwoPhaseEulerFoam which is part of OpenFOAM. This Euler-Euler solver treats both the phases as a continuum with its own momentum and continuity equations. The phases are coupled with coupling terms such as the drag force.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Offshore and Dredging Engineerin

    Towards simulating flow induced spillage in dredge cutter heads using DEM-FVM

    No full text
    When dredging rock using a Cutter Suction Dredger the high amount of spillage is problematic, since it prevents an energy efficient removal process. This papers presents a coupled DEM-FVM method to simulate spillage, that can be used for optimizing the design and working method of the Cutter Suction Dredger. In these simulations, the challenge was to model relatively large particles in a complex and rotating geometry. To ensure stability and reduce computational time we used smoothing kernels to map the forces and the concentration between the discrete elements and the fluid mesh. The method is validated for the fluid flow in the rotating cutter head. This model incorporates all physical processes to predict flow induced spillage in cutter heads within feasible calculation times.Offshore and Dredging Engineerin

    Two-phase modelling for sediment water mixtures above the limit deposit velocity in horizontal pipelines

    No full text
    In dredging applications, deep sea mining and land reclamation projects typically large amounts of sediments are transported through pipes in the form of hyper concentrated (40% sediment or more) sediment-water mixtures or slurries. In this paper it is investigated how well a generic Euler-Euler CFD-model is capable to model velocity, concentration profiles and the pressure gradient of sediment above deposition limit velocity in a pipeline. This Euler-Euler solver treats both phases as a continuum with its own momentum and continuity equations. The full kinetic theory for granular flows is accounted for (no algebraic form is used) and is combined with a buoyant k-ε turbulence model for the fluid phase. The influence of the mesh size has been checked and grid convergence is achieved. All numerical schemes used are of second-order accuracy in space. The pressure gradient was calibrated by adjusting the specularity coefficient in one calibration case and kept constant afterwards. Simulations were carried out in a wide range of slurry flow parameters, in situ volume concentration (9–42%), pipe diameter (0.05–0.90 m), particle diameter (90–440 μm) and flow velocity of (3–7 m/s). The model shows satisfactory agreement to experimental data from existing literature.Offshore and Dredging EngineeringRivers, Ports, Waterways and Dredging Engineerin

    Advection-diffusion sediment models in a two-phase flow perspective

    No full text
    Sediment profiles in open channels are usually predicted by advection-diffusion models. Most basic forms consider the terminal settling velocity of a single particle in still clear water. Alternative forms account for hindered settling at higher concentrations. It is not known, however, how these modifications relate to mass and momentum conservation of each phase. For dilute flow, it is known that the original form can be derived from a two-phase analysis, assuming a dilute suspension, neglect of inertial effects in the momentum balance and using a linear drag force formulation. Here we study how and if it is possible to understand the hindered-settling modifications for the non-dilute case, and formulate a relation between advection-diffusion models and parameters involved in the turbulent drag force. This note verifies that the transient two-phase flow solutions converge to steady state, and compares the results to experimental data.Offshore and Dredging Engineerin

    Associative evidence for the potential of humidification as a non-pharmaceutical intervention for influenza and SARS-CoV-2 transmission

    No full text
    Background: Both influenza and SARS-CoV-2 viruses show a strong seasonal spreading in temperate regions. Several studies indicated that changes in indoor humidity could be one of the key factors explaining this. Objective: The purpose of this study is to quantify the association between relevant epidemiological metrics and humidity in both influenza and SARS-CoV-2 epidemic periods. Methods: The atmospheric dew point temperature serves as a proxy for indoor relative humidity. This study considered the weekly mortality rate in the Netherlands between 1995 and 2019 to determine the correlation between the dew point and the spread of influenza. During influenza epidemic periods in the Netherlands, governmental restrictions were absent; therefore, there is no need to control this confounder. During the SARS-CoV-2 pandemic, governmental restrictions strongly varied over time. To control this effect, periods with a relatively constant governmental intervention level were selected to analyze the reproduction rate. We also examine SARS-CoV-2 deaths in the nursing home setting, where health policy and social factors were less variable. Viral transmissibility was measured by computing the ratio between the estimated daily number of infectious persons in the Netherlands and the lagged mortality figures in the nursing homes. Results: For both influenza and SARS-CoV-2, a significant correlation was found between the dew point temperature and the aforementioned epidemiological metrics. The findings are consistent with the anticipated mechanisms related to droplet evaporation, stability of virus in the indoor environment, and impairment of the natural defenses of the respiratory tract in dry air. Significance: This information is helpful to understand the seasonal pattern of respiratory viruses and motivate further study to what extent it is possible to alter the seasonal pattern by actively intervening in the adverse role of low humidity during fall and winter in temperate regions. Impact: A solid understanding and quantification of the role of humidity on the transmission of respiratory viruses is imperative for epidemiological modeling and the installation of non-pharmaceutical interventions. The results of this study indicate that improving the indoor humidity by humidifiers could be a promising technology for reducing the spread of both influenza and SARS-CoV-2 during winter and fall in the temperate zone. The identification of this potential should be seen as a strong motivation to invest in further prospective testing of this non-pharmaceutical intervention.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisheris the copyright holder of this work and the author uses the Dutch legislation to make this work public.Offshore and Dredging EngineeringAtmospheric Remote Sensin

    Application of a maritime CFD code to a benchmark problem for non-Newtonian fluids: the flow around a sphere

    No full text
    The ship’s resistance and manoeuvrability in shallow waters can be adversely influenced by the presence of fluid mud layers on the seabed of ports and waterways. Fluid mud exhibits a complex non-Newtonian rheology that is often described using the Herschel–Bulkley model. The latter has been recently implemented in a maritime finite-volume CFD code to study the manoeuvrability of ships in the presence of muddy seabeds. In this paper, we explore the accuracy and robustness of the CFD code in simulating the flow of Herschel–Bulkley fluids, including power-law, Bingham and Newtonian fluids as particular cases. As a stepping stone towards the final maritime applications, the study is carried out on a classic benchmark problem in non-Newtonian fluid mechanics: the laminar flow around a sphere. The aim is to test the performance of the non-Newtonian solver before applying it to the more complex scenarios. Present results could also be used as reference data for future testing. Flow simulations are carried out at low Reynolds numbers in order to compare our results with an extensive collection of data from the literature. Results agree both qualitatively and quantitatively with literature. Difficulties in the convergence of the iterative solver emerged when simulating Bingham and Herschel–Bulkley flows. A simple change in the interpolation of the apparent viscosity has mitigated such difficulties. The results of this work, combined with our previous code verification exercises, suggest that the non-Newtonian solver works as intended and it can be thus employed on more complex applications.Rivers, Ports, Waterways and Dredging EngineeringOffshore and Dredging Engineerin

    An extension of the drift-flux model for submarine granular flows

    No full text
    To model submarine flows of granular materials we propose an extension of the drift-flux approach. The extended model is able to represent dilute suspensions as well as dense granular flows. The dense granwular flow is modelled as a Herschel–Bulkley fluid, with a yield stress that depends on the dispersed phase pressure. Qualitative numerical experiments show that the model is able to correctly reproduce the stability of submerged sand heaps with different internal angles of friction and initial slopes. When initially starting with heaps with an angle smaller than the internal angle of friction, the heaps are stable. When starting with heaps with angles larger than the internal angle of friction, a flow of solid material is initiated. The flow later stops when the bed is at an angle smaller than the internal angle of friction.Offshore and Dredging Engineerin

    Stabilizing and Destabilizing Breaching Flow Slides

    No full text
    As a result of the dilation of soil matrix, dense submarine sand slopes can temporarily be steeper than the natural angle of repose. These slopes gradually fail by the detachment of individual grains and intermittent collapses of small coherent sand wedges. The key question is whether steep disturbances in a submarine slope grow in size (destabilizing breaching) or gradually diminish (stabilizing breaching) and thereby limit the overall slope failure and resulting damage. The ability to predict whether the breaching failure is stabilizing or destabilizing is also crucial for the assessment of safety of submarine infrastructure and hydraulic structures located along rivers, lakes, and coasts. Through a set of large-scale laboratory experiments, we investigate the validity of an existing criterion to determine the failure mode of breaching (i.e., stabilizing or destabilizing). Both modes were observed in these experiments, providing a unique set of data for analysis. It is concluded that the existing method has limited forecasting power. This was quantified using the mean absolute percentage error, which was found to be 92%. The reasons behind this large discrepancy are discussed. Given the complexity of the underlying geotechnical and hydraulic processes, more advanced methodologies are required.Offshore and Dredging Engineerin

    CFD analysis of the full-scale resistance of an oil tanker in presence of a mud–water interface

    No full text
    The presence of mud layers on the bottom of ports and waterways can have negative effects on the hydrodynamic behaviour of marine vessels. This numerical study investigates the effect of muddy seabeds on the full-scale resistance of an oil tanker sailing straight ahead. The objective is to determine the influence of factors such as the densimetric Froude number, UKC and mud rheology at speeds between 3 and 9 knots. The numerical study is conducted using a finite-volume Reynolds-Averaged Navier–Stokes (RANS) flow solver combined with the Volume-Of-Fluid (VOF) method to capture the mud–water interface. At certain critical speeds, the presence of mud increased the ship’s total resistance by up to 15 times compared to the case with solid bottoms. The non-Newtonian rheology of mud was found to influence the ship’s resistance mainly at low speeds and when sailing through the mud layer. This article also shows that, when sailing through mud, the computed resistance at high speeds may be underestimated because of two effects, namely ‘water lubrication’ and ‘numerical ventilation’.Offshore and Dredging EngineeringRivers, Ports, Waterways and Dredging Engineerin
    corecore