14 research outputs found

    Turbulence distortion effects for leading-edge noise prediction

    Get PDF

    Numerical study of inflow turbulence distortion and noise for airfoils

    Get PDF
    In this work, the interaction of grid-generated turbulence with airfoils of different thicknesses, namely, a National Advisory Committee for Aeronautics (NACA) 0008 and a NACA 0018, is investigated, leading to a deeper understanding of the influence of the airfoil geometry on the near-field flow and on the far-field pressure fluctuations. Experimentally validated lattice-Boltzmann simulations are used to analyze the flow properties in the leading-edge (LE) vicinity. The analysis of the velocity fluctuations near the LE shows that momentum is transferred from the streamwise to the transverse velocity for the NACA 0008 airfoil interacting with a large turbulence length scale. This mechanism changes with the increase in the airfoil thickness because the inflow turbulence length scale becomes comparable to the airfoil thickness in the LE region, resulting in a higher concentration of vortices near the LE oriented in the transverse direction, creating high-velocity fluctuations in the spanwise direction. The near- and far-field pressure fluctuations are analyzed to understand the impact of the inflow turbulence distortion on these parameters and the limitations of analytical methods for real airfoils. Results show that the wall-pressure fluctuations are affected by the turbulence distortion in the LE region. Thick airfoils have noise directivity patterns significantly different compared to the Amiet predictions for higher frequencies, radiating higher noise levels upstream of the LE than the thin airfoil. This is likely associated with a drastic change in the pressure fluctuation distribution near the airfoil LE region, attributed to the change in the distortion of the vortical structures in the LE area.</p

    Lubricated Impact Dynamics and Pressure Spike Generation: Expanding on Contributions of Dr. R. Gohar

    No full text
    The current paper focuses on the research of Dr. R. Gohar and in particular on his impacting ball and pressure spike measurement work. Its scope then expands to discuss contributions from other researchers concerning these two fields. The authors combined the two themes in a numerical study of an impacting contact. This study shows the detailed position of the pressure spike as a function of time. Then, the pressure spike position velocity is derived, and it is demonstrated that this velocity varies with time. As such, the paper concludes that the pressure spike shape itself must vary with time

    Professor Duncan Dowson, a source of inspiration

    No full text
    International audienceThe current paper highlights the contribution of the Dowson and Higginson work to numerical line contact elastohydrodynamic lubrication film thickness prediction and the Hamrock and Dowson contribution to the film thickness prediction in elliptical contacts. This paper shows that, even by today’s standards, both the numerical pressure and film thickness results and the curve-fitted film thickness predictions are very accurate. As for the elliptical results, the authors show that the original predictions remain surprisingly accurate for moderately elliptical contact. For very long elliptical contacts, their prediction does not tend to a line contact asymptote. This paper then concludes that the predicted pressure spikes by Dowson, Higginson, and Hamrock are correct in shape and amplitude, at least near pure rolling conditions

    Multigrid Solution of the Potential Field in Modeling Electrical Nerve Stimulation

    Get PDF
    In this paper, multilevel techniques are introduced as a fast numerical method to compute 3-D potential field in nerve stimulation configurations. It is shown that with these techniques the computing time is reduced significantly compared to conventional methods. Consequently, these techniques greatly enhance the possibilities for parameter studies and electrode design. Following a general description of the model of nerve stimulation configurations, the basic principles of multilevel solvers for the numerical solution of partial differential equations are briefly summarized. Subsequently, some essential elements for successful application are discussed. Finally, results are presented for the potential field in a nerve bundle induced by tripolar stimulation with a cuff electrode surrounding part of the nerve
    corecore