22 research outputs found

    Transcriptional regulation of the human ALDH1A1 promoter by the oncogenic homeoprotein TLX1/HOX11

    Get PDF
    The homeoprotein TLX1, which is essential to spleen organogenesis and oncogenic when aberrantly expressed in immature T cells, functions as a bifunctional transcriptional regulator, being capable of activation or repression depending on cell type and/or promoter context. However, the detailed mechanisms by which it regulates the transcription of target genes such as ALDH1A1 remains to be elucidated. We therefore functionally assessed the ability of TLX1 to regulate ALDH1A1 expression in two hematopoietic cell lines, PER-117 T-leukemic cells and human erythroleukemic (HEL) cells, by use of luciferase reporter and mobility shift assays. We showed that TLX1 physically interacts with the general transcription factor TFIIB via its homeodomain, and identified two activities in respect to TLX1-mediated regulation of the CCAAT box-containing ALDH1A1 promoter. The first involved CCAAT-dependent transcriptional repression via perturbation of GATA factor-containing protein complexes assembled at a non-canonical TATA (GATA) box. A structurally intact homeodomain was essential for repression by TLX1 although direct DNA binding was not required. The second activity, which involved CCAAT-independent transcriptional activation did not require an intact homeodomain, indicating that the activation and repression functions of TLX1 are distinct. These findings confirm ALDH1A1 gene regulation by TLX1 and support an indirect model for TLX1 function, in which protein-protein interactions, rather than DNA binding at specific sites, are crucial for its transcriptional activity

    A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma

    Get PDF
    NUT midline carcinoma (NMC) is a fatal cancer that arises in various tissues along the upper midline of the body. The defining molecular feature of NMC is a chromosomal translocation that joins (in the majority of cases) the nuclear testis gene NUT (NUTM1) to the bromodomain protein family member 4 (BRD4) and thereby creating a fusion oncogene that disrupts cellular differentiation and drives the disease. In this study, we report the case of an adolescent NMC patient presenting with severe facial pain, proptosis and visual impairment due to a mass arising from the ethmoid sinus that invaded the right orbit and frontal lobe. Treatment involved radical resection, including exenteration of the affected eye with the view to consolidate treatment with radiation therapy; however, the patient experienced rapid tumor progression and passed away 79 days post resection. Molecular analysis of the tumor tissue identified a novel in-frame BRD4-NUT transcript, with BRD4 exon 15 fused to the last 124 nucleotides of NUT exon 2 (BRD4-NUT ex15:ex2Δnt1–585). The partial deletion of NUT exon 2 was attributed to a mid-exonic genomic breakpoint and the subsequent activation of a cryptic splice site further downstream within the exon. Inhibition of the canonical 3′ acceptor splice site of NUT intron 1 in cell lines expressing the most common NMC fusion transcripts (PER-403, BRD4-NUT ex11:ex2; PER-624, BRD4-NUT ex15:ex2) induced alternative splicing from the same cryptic splice site as identified in the patient. Detection of low levels of an in-frame BRD4-NUT ex11:ex2Δnt1–585 transcript in PER-403 confirmed endogenous splicing from this alternative exon 2 splice site. Although further studies are necessary to assess the clinical relevance of the increasing number of variant fusions described in NMC, the findings presented in this case identify alternative splicing as a mechanism that contributes to this pathogenic complexity

    Aberrant expression of aldehyde dehydrogenase 1A (ALDH1A) subfamily genes in acute lymphoblastic leukaemia is a common feature of T-lineage tumours

    Get PDF
    The class 1A aldehyde dehydrogenase (ALDH1A) subfamily of genes encode enzymes that function at the apex of the retinoic acid (RA) signalling pathway. We detected aberrant expression of ALDH1A genes, particularly ALDH1A2, in a majority (72%) of primary paediatric T cell acute lymphoblastic leukaemia (T-ALL) specimens. ALDH1A expression was almost exclusive to T-lineage, but not B-lineage, ALL. To determine whether ALDH1A expression may have relevance to T-ALL cell growth and survival, the effect of inhibiting ALDH1A function was measured on a panel of human ALL cell lines. This revealed that T-ALL proliferation had a higher sensitivity to modulation of ALDH1A activity and RA signalling as compared to ALL cell lines of B-lineage. Consistent with these findings, the genes most highly correlated with ALDH1A2 expression were involved in cell proliferation and apoptosis. Evidence that such genes may be targets of regulation via RA signalling initiated by ALDH1A activity was provided by the TNFRSF10B gene, encoding the apoptotic death receptor TNFRSF10B (also termed TRAIL-R2), which negatively correlated with ALDH1A2 and showed elevated transcription following treatment of T-ALL cell lines with the ALDH1A inhibitor citral (3,7-dimethyl-2,6-octadienal). These data indicate that ALDH1A expression is a common event in T-ALL and supports a role for these enzymes in the pathobiology of this disease

    Novel CT domain-encoding splice forms of CTGF/CCN2 are expressed in B-lineage acute lymphoblastic leukaemia

    Get PDF
    Introduction: Connective tissue growth factor (CTGF/. CCN2) has been shown previously to be aberrantly expressed in a high proportion of paediatric precursor B cell acute lymphoblastic leukaemia (pre-B ALL), suggesting a potential oncogenic role in this tumour type. We therefore assessed CTGF mRNA transcript diversity in B-lineage ALL using primary patient specimens and cell lines. Methods: CTGF mRNA expression was evaluated by quantitative real-time PCR and Northern blotting. We performed a structural analysis of CTGF mRNA by nested reverse-transcriptase PCR and examined CTGF protein diversity by immunoblotting. Results: Northern blot analysis of pre-B ALL cell lines revealed short CTGF transcripts that were expressed in association with the active phase of cellular growth. Structural analysis confirmed the synthesis of several novel CTGF mRNA isoforms in B-lineage ALL cell lines that were uniformly characterised by the retention of the coding sequence for the C-terminal (CT) domain. One of these novel spliceforms was expressed in a majority (70%) of primary pre-B ALL patient specimens positive for canonical CTGF mRNA. Evidence that these alternative transcripts have coding potential was provided by cryptic CTGF proteins of predicted size detected by immunoblotting. Conclusion: This study identifies for the first time alternative splicing of the CTGF gene and shows that a short CTGF splice variant associated with cell proliferation is expressed in most cases of primary CTGF-positive pre-B ALL. This novel variant encoding only the CT domain may play a role in pre-B ALL tumorigenesis and/or progression

    Transcriptional regulation of FHL1 by TLX1/HOX11 is dosage, cell-type and promoter context-dependent

    No full text
    TLX1/HOX11 encodes an NK-like homeodomain transcription factor that is both normally required for embryonic development and aberrantly expressed in T-cell acute lymphoblastic leukemia. Previous studies have shown that TLX1 can regulate target genes including ALDH1A1 and FHL1. However, whereas ALDH1A1 is consistently regulated by TLX1, endogenous FHL1 is only induced in a proportion of fibroblast or T-cell clones stably expressing TLX1. Here, we provide an explanation for these findings by demonstrating that the induction of FHL1, but not ALDH1A1, requires a high level of TLX1 expression in NIH 3T3 cells. In luciferase reporter assays, TLX1-mediated repression rather than activation of the FHL1 gene promoter and the magnitude of this effect was strongly influenced by the cellular background. Together, these results characterize TLX1 as a dual function regulator whose activity in respect to FHL1 is critically dependent upon its cellular concentration, as well as cell type and promoter context

    Genomic structure, tissue expression and chromosomal location of the LIM-only gene, SLIM1

    No full text
    Human SLIM1 is a recently described gene of the LIM-only class encoding four and a half tandemly repeated LIM domains. LIM domains are double zinc finger structures which provide an interface for protein/protein interactions and are conserved in a variety of nuclear and cytoplasmic factors important in cell fate determination and cellular regulation. Here we report the structural organization, expression pattern and chromosomal localization of the human SLIM1 gene. SLIM1 was found to contain at least five exons with all four introns disrupting the coding region at a similar position relative to the respective complete LIM domains. Northern blot analysis confirmed strikingly high expression of SLIM1 in skeletal muscle and heart, with much lower expression observed in several other tissues including colon, small intestine and prostate. The SLIM1 gene was assigned to human chromosome Xq26 using fluorescence in situ hybridization

    MEIS proteins as partners of the TLX1/HOX11 oncoprotein

    Get PDF
    Aberrant expression of the TLX1/. HOX11 proto-oncogene is associated with a significant subset of T-cell acute lymphoblastic leukemias (T-ALL). Yet the manner in which TLX1 contributes to oncogenesis is not fully understood. Since, typically, interactions of HOX and TALE homeodomain proteins are determinant of HOX function, and HOX/MEIS co-expression has been shown to accelerate some leukemias, we systematically examined whether TLX1 interacts with MEIS and PBX proteins. Here, we report that TLX1 and MEIS proteins both interact and are co-expressed in T-ALL, and suggest that co-operation between TLX1 and MEIS proteins may have a significant role in T-cell leukemogenesis

    Expression and purification of the human homeodomain oncoprotein HOX11

    No full text
    HOX11 is a transcription factor belonging to the homeodomain family that is essential for spleen development during embryogenesis. It is also tumorigenic, being associated with T-cell acute lymphoblastic leukemia in children. In order to understand the functional role of HOX11 in both normal development and malignancy, protein-DNA and protein-protein interaction studies involving this factor are required. Such investigations would be facilitated by the availability of significant amounts of purified HOX11 protein. However, expression of full-length HOX11 in bacteria has been reported to be problematic owing to fusion protein instability. Here, we report the purification of human HOX11 expressed in Escherichia coli as a soluble and functional glutathione S-transferase (GST) fusion protein. In addition, a mutant version of HOX11 was produced (HOX11ΔH3) which lacked the DNA-recognition helix (helix 3) of the homeodomain. Through a single purification procedure using glutathione-Sepharose, 2 mg of the recombinant proteins were obtained per liter of bacterial culture. Notably, recombinant GST-HOX11 fusion proteins had a markedly higher stability when purified at low temperature (4°C). Purification to near-homogeneity was achieved as judged by SDS-PAGE and the purified proteins were recognized by anti-HOX11 antibodies. The biological activity of the recombinant protein was verified by the specific binding of GST-HOX11, but not GST-HOX11ΔH3, to DNA containing consensus HOX11 recognition sites

    The nuclear oncoprotein TLX1/HOX11 associates with pericentromeric satellite 2 DNA in leukemic T-cells

    No full text
    TLX1/HOX11, a DNA-binding homeodomain protein, was originally identified by virtue of its aberrant expression in T-cell leukemia and subsequently found to be crucial for normal spleen development. The precise mechanism of TLX1 function remains poorly understood, although it is known that it can act as both a transcriptional activator and repressor and can downregulate the Aldh1a1 gene in embryonic mouse spleen. Using a whole-genome PCR approach, we show here that TLX1 protein directly interacts with pericentromeric human satellite 2 DNA sequences. Such DNA is known to localize to heterochromatin, which among other roles has been implicated in gene silencing. The interaction was confirmed in vitro and in vivo by gel retardation and chromatin immunoprecipitation assays involving satellite 2 DNA, which contained sequences resembling TLX1 binding sites. Using immunofluorescence microscopy, TLX1 demonstrated a punctate pattern of staining in the nuclei of leukemic T-cells (ALL-SIL). Double labelling indicated that TLX1 colocalized with the centromeric protein CENP-B, demonstrating that the TLX1 foci corresponded to clusters of centromeric DNA. The novel interaction of TLX1 with constitutive heterochromatin adds an additional level of complexity to the intracellular functions of this transcriptional regulator and may have relevance to its roles in transcriptional repression and T-cell immortalization
    corecore