2,830 research outputs found
Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere
We present high-cadence observations and simulations of the solar
photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere
imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each
dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour,
visible as periodic intensity fluctuations with periods in the range 110-600 s.
Almost no propagating waves with periods less than 140s and 110s are detected
in the observational and simulated datasets, respectively. High concentrations
of power are found in highly magnetised regions, such as magnetic bright points
and intergranular lanes. Radiative diagnostics of the photospheric simulations
replicate our observational results, confirming that the current breed of
magneto-hydrodynamic simulations are able to accurately represent the lower
solar atmosphere. All observed oscillations are generated as a result of
naturally occurring magnetoconvective processes, with no specific input driver
present. Using contribution functions extracted from our numerical simulations,
we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100
km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a
dominant phase delay of -8 degrees between the G-band and 4170 Angstrom
continuum observations, suggesting the presence of upwardly propagating waves.
More than 73% of MBPs (73% from observations, 96% from simulations) display
upwardly propagating wave phenomena, suggesting the abundant nature of
oscillatory behaviour detected higher in the solar atmosphere may be traced
back to magnetoconvective processes occurring in the upper layers of the Sun's
convection zone.Comment: 13 pages, 9 figures, accepted into Ap
The Velocity Distribution of Solar Photospheric Magnetic Bright Points
We use high spatial resolution observations and numerical simulations to
study the velocity distribution of solar photospheric magnetic bright points.
The observations were obtained with the Rapid Oscillations in the Solar
Atmosphere instrument at the Dunn Solar Telescope, while the numerical
simulations were undertaken with the MURaM code for average magnetic fields of
200 G and 400 G. We implemented an automated bright point detection and
tracking algorithm on the dataset, and studied the subsequent velocity
characteristics of over 6000 structures, finding an average velocity of
approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging
magnetic bright points were found to have considerably higher velocities, and
significantly longer lifetimes, than isolated structures. By implementing a new
and novel technique, we were able to estimate the background magnetic flux of
our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure
Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III
We present interstellar absorption line measurements of the ions S III and Al
III towards six stars using archival Goddard High Resolution Spectrograph data.
The ions Al III and S III trace heavily depleted and non-depleted elements,
respectively, in ionized gas. We use the photoionization code CLOUDY to derive
the ionization correction relating N(Al III)/N(S III) to the gas-phase
abundance [Al/S]_i in the ionized gas. For spectral types considered here, the
corrections are small and independent of the assumed ionization parameter.
Using the results of these photoionization models, we find [Al/S]_i = -1.0 in
the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i)
imply that Al-bearing grains are present in the ionized nebulae around these
stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two
halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of
dust grains containing Al in this important phase of the ISM. While
photoionization appears to be the most likely origin of the ionization for Al
III and S III, we cannot rule out confusion from the presence of hot,
collisionally ionized gas along two sightlines. We find that [Al/S]_i in the
ionized gas along the six sightlines is anti-correlated with the electron
density and average sightline neutral density. The degree of grain destruction
in the ionized medium of the Galaxy is not much higher than in the warm neutral
medium. The existence of grains in the ionized regions studied here has
important implications for the thermal balance of these regions. (Abstract
Abridged)Comment: 30 pages including 8 embedded tables and 8 embedded figures. Accepted
for publication in the Astrophysical Journa
Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons
With the high-resolution spectroscopy now available in the optical and
satellite UV, it is possible to determine the neutral/ionized column density
ratios for several different elements in a single cloud. Assuming ionization
equilibrium for each element, one can make several independent determinations
of the electron density. For the clouds for which such an analysis has been
carried out, these different estimates disagree by large factors, suggesting
that some process (or processes) besides photoionization and radiative
recombination might play an important role in the ionization balance. One
candidate process is collisions of ions with dust grains.
Making use of recent work quantifying the abundances of polycyclic aromatic
hydrocarbon molecules and other grains in the interstellar medium, as well as
recent models for grain charging, we estimate the grain-assisted ion
recombination rates for several astrophysically important elements. We find
that these rates are comparable to the rates for radiative recombination for
conditions typical of the cold neutral medium. Including grain-assisted ion
recombination in the ionization equilibrium analysis leads to increased
consistency in the various electron density estimates for the gas along the
line of sight to 23 Orionis. However, not all of the discrepancies can be
eliminated in this way; we speculate on some other processes that might play a
role. We also note that grain-assisted recombination of H+ and He+ leads to
significantly lower electron fractions than usually assumed for the cold
neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty);
submitted to ApJ; corrected typo
Genetic diversity of \u3ci\u3eDanthonia spicata\u3c/i\u3e (L.) Beauv. based on genomic simple sequence repeat markers
Danthonia spicata (L.) Beauv., commonly known as poverty oatgrass, is a perennial bunch-type grass native to North America. D. spicata is often found in low input turfgrass areas on the East Coast of the United States and has potential for development as a new native low input turfgrass species. Roche 454 sequenced randomly sheared genomic DNA reads of D. spicata were mined for SSR markers using the MIcroSAtellite identification tool. A total of 66,553 singlet sequences (approximately 37.5 Mbp) were examined, and 3454 SSR markers were identified. Trinucleotide motifs with greater than six repeats and possessing unique PCR priming sites within the genome, as determined by Primer-BLAST, were evaluated visually for heterozygosity and mutation consistent with stepwise evolution using CLC Genomics software. Sixty-three candidate markers were selected for testing from the trinucleotide SSR marker sites meeting these in silico criteria. Ten primer pairs that amplified polymorphic loci in preliminary experiments were used to screen 91 individual plants composed of at least 3–5 plants from each of 23 different locations. The primer pairs amplified 54 alleles ranging in size from 71 to 246 bp. Minimum and maximum numbers of alleles per locus were two and 12, respectively, with an average of 5.4. A dendrogram generated by unweighted pair group method with arithmetic mean cluster analysis using the Jaccard’s similarity coefficient was in agreement with the grouping obtained by Structure v2.3. The analyses were dominated by clonal groupings and lack evidence for gene flow with some alleles present in a single plant from a single location. Fourteen multilocus genotype groups were observed providing strong evidence for asexual reproduction in the studied D. spicata populations
A Search for High-Frequency Coronal Brightness Variations in the 21 August 2017 Total Solar Eclipse
We report on a search for short-period intensity variations in the green-line
FeXIV 530.3 nm emission from the solar corona during the 21 August 2017 total
eclipse viewed from Idaho in the United States. Our experiment was performed
with a much more sensitive detection system, and with better spatial
resolution, than on previous occasions (1999 and 2001 eclipses), allowing fine
details of quiet coronal loops and an active-region loop system to be seen. A
guided 200-mm-aperture Schmidt-Cassegrain telescope was used with a
state-of-the-art CCD camera having 16-bit intensity discrimination and a
field-of-view 0.43 degree x 0.43 degree that encompassed approximately one
third of the visible corona. The camera pixel size was 1.55 arcseconds, while
the seeing during the eclipse enabled features of approx. 2 arcseconds (1450 km
on the Sun) to be resolved. A total of 429 images were recorded during a 122.9
second portion of the totality at a frame rate of 3.49 images per second. In
the analysis, we searched particularly for short-period intensity oscillations
and travelling waves, since theory predicts fast-mode magneto-hydrodynamic
(MHD) waves with short periods may be important in quiet coronal and
active-region heating. Allowing first for various instrumental and photometric
effects, we used a wavelet technique to search for periodicities in some 404
000 pixels in the frequency range 0.5-1.6 Hz (periods: 2 second to 0.6 second).
We also searched for travelling waves along some 65 coronal structures.
However, we found no statistically significant evidence in either. This
negative result considerably refines the limit that we obtained from our
previous analyses, and it indicates that future searches for short-period
coronal waves may be better directed towards Doppler shifts as well as
intensity oscillations
Recommended from our members
Poverty, Disease, and the Ecology of Complex Systems
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development
Near-Infrared Classification Spectroscopy: H-band Spectra of Fundamental MK Standards
We present a catalogue of H-band spectra for 85 stars of approximately solar
abundance observed at a resolving power of 3000 with the KPNO Mayall 4m FTS.
The atlas covers spectral types O7-M5 and luminosity classes I-V as defined on
the MK system. We identify both atomic and molecular indices and line-ratios
which are temperature and luminosity sensitive allowing spectral classification
to be carried out in the H-band. The line ratios permit spectral classification
in the presence of continuum excess emission, which is commonly found in
pre-main sequence and evolved stars. We demonstrate that with spectra of R =
1000 obtained at SNR > 50 it is possible to derive spectral types within +- 2
subclasses for late-type stars. These data are available electronically through
the Astronomical Data Center in addition to being served on the World-Wide-Web.Comment: To appear in the November 20, 1998 issue of ApJ (Volume 508, #1
Treatment of Advanced Emphysema with Emphysematous Lung Sealant (AeriSeal (R))
Background: This report summarizes initial tests of an emphysematous lung synthetic polymer sealant (ELS) designed to reduce lung volume in patients with advanced emphysema. Objectives: The primary study objective was to define a therapeutic strategy to optimize treatment safety and effectiveness. Methods: ELS therapy was administered bronchoscopically to 25 patients with heterogeneous emphysema in an open-label, noncontrolled study at 6 centers in Germany. Treatment was performed initially at 2-4 subsegments. After 12 weeks, patients were eligible for repeat therapy to a total of 6 sites. Safety and efficacy were assessed after 6 months. Responses were evaluated in terms of changes from baseline in lung physiology, functional capacity, and health-related quality of life. Follow-up is available for 21 of 25 patients. Results: Treatment was well tolerated. There were no treatment-related deaths (i.e. within 90 days of treatment), and an acceptable short-and long-term safety profile. Physiological and clinical benefits were observed at 24 weeks. Efficacy responses were better among Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage III patients {[}n = 14; change in residual volume/total lung capacity (Delta RV/TLC) = -7.4 +/- 10.3%; Delta forced expiratory volume in 1 s (Delta FEV(1)) = +15.9 +/- 22.6%; change in forced vital capacity (Delta FVC) = +24.1 +/- 22.7%; change in carbon monoxide lung diffusion capacity (Delta DLCO) = +19.3 +/- 34.8%; change in 6-min walk test (Delta 6MWD) = +28.7 +/- 59.6 m; change in Medical Research Council Dyspnea (Delta MRCD) score = -1.0 +/- 1.04 units; change in St. George's Respiratory Questionnaire (Delta SGRQ) score = -9.9 +/- 15.3 units] than for GOLD stage IV patients (n = 7; Delta RV/TLC = -0.5 +/- 6.4%; Delta FEV 1 = +2.3 +/- 12.3%; Delta FVC = +2.6 +/- 21.1%; Delta DLCO = -2.8 +/- 17.2%; Delta 6MWD = +28.3 +/- 58.4 m; Delta MRCD = 0.3 +/- 0.81 units; Delta SGRQ = -6.7 +/- 7.0 units). Conclusions: ELS therapy shows promise for treating patients with advanced heterogeneous emphysema. Additional studies to assess responses in a larger cohort with a longer follow-up are warranted. Copyright (C) 2011 S. Karger AG, Base
- …