186 research outputs found

    On quantifying the apparent temperature sensitivity of plant phenology.

    Get PDF
    Many plant phenological events are sensitive to temperature, leading to changes in the seasonal cycle of ecosystem function as the climate warms. To evaluate the current and future implications of temperature changes for plant phenology, researchers commonly use a metric of temperature sensitivity, which quantifies the change in phenology per degree change in temperature. Here, we examine the temperature sensitivity of phenology, and highlight conditions under which the widely used days-per-degree sensitivity approach is subject to methodological issues that can generate misleading results. We identify several factors, in particular the length of the period over which temperature is integrated, and changes in the statistical characteristics of the integrated temperature, that can affect the estimated apparent sensitivity to temperature. We show how the resulting artifacts can lead to spurious differences in apparent temperature sensitivity and artificial spatial gradients. Such issues are rarely considered in analyses of the temperature sensitivity of phenology. Given the issues identified, we advocate for process-oriented modelling approaches, informed by observations and with fully characterised uncertainties, as a more robust alternative to the simple days-per-degree temperature sensitivity metric. We also suggest approaches to minimise and assess spurious influences in the days-per-degree metric

    Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region

    Get PDF
    Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we combine model simulations, remote sensing products, and ground observations to investigate the impact of climate variability on carbon uptake in the Texas‐northern Mexico region. Specifically, we (1) examine the relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator (JULES) biosphere simulations from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3) evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network of flux towers in the region. Long‐term simulations reveal systematic decreases in regional‐scale carbon uptake during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP) (−0.42 ± 0.18 Pg C yr^(−1)) and net ecosystem production (NEP) (−0.14 ± 0.11 Pg C yr^(−1)) during strong La Niña years. The 2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C yr^(−1)) and NEP (−0.23 Pg C yr^(−1)) in our simulations. In 2011, consistent declines were found in observations, including high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based products. These results suggest a large‐scale response of carbon uptake to ENSO and NAO, and highlight a need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on the carbon cycle and the associated feedbacks to climate change

    Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections

    Developing an intervention to facilitate family communication about inherited genetic conditions, and training genetic counsellors in its delivery.

    Get PDF
    Many families experience difficulty in talking about an inherited genetic condition that affects one or more of them. There have now been a number of studies identifying the issues in detail, however few have developed interventions to assist families. The SPRinG collaborative have used the UK Medical Research Council's guidance on Developing and Evaluating Complex Interventions, to work with families and genetic counsellors (GCs) to co-design a psycho-educational intervention to facilitate family communication and promote better coping and adaptation to living with an inherited genetic condition for parents and their children (<18 years). The intervention is modelled on multi-family discussion groups (MFDGs) used in psychiatric settings. The MFDG was developed and tested over three phases. First focus groups with parents, young people, children and health professionals discussed whether MFDG was acceptable and proposed a suitable design. Using evidence and focus group data, the intervention and a training manual were developed and three GCs were trained in its delivery. Finally, a prototype MFDG was led by a family therapist and co-facilitated by the three GCs. Data analysis showed that families attending the focus groups and intervention thought MFDG highly beneficial, and the pilot sessions had a significant impact on their family' functioning. We also demonstrated that it is possible to train GCs to deliver the MFDG intervention. Further studies are now required to test the feasibility of undertaking a definitive randomised controlled trial to evaluate its effectiveness in improving family outcomes before implementing into genetic counselling practice.The National Institute of Health Research funded the study but any views expressed do not necessarily reflect those of the Authority. Funded by NIHR reference number: RP-DG-1211-10015

    Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery

    Get PDF
    Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems
    • 

    corecore