2 research outputs found

    Multilocus Sequence Typing versus Pulsed-Field Gel Electrophoresis for Characterization of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates

    No full text
    Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains are emerging pathogens. Molecular typing of ESBL-producing E. coli is useful for surveillance purposes, to monitor outbreaks and track nosocomial spread. Although pulsed-field gel electrophoresis (PFGE) is the current “gold standard” for bacterial molecular typing, multilocus sequence typing (MLST) may offer advantages. Forty ESBL-producing E. coli isolates were selected at random from a cohort of intensive care unit patients who had active surveillance perirectal cultures done. PFGE identified 19 unique PFGE types (PT) among the 40 isolates; MLST identified 22 unique sequence types. MLST had greater discriminatory ability than PFGE for ESBL-producing E. coli. Simpson's indices of diversity for PFGE and MLST were 0.895 and 0.956, respectively. There were five clonal complexes (CCs) (isolates with differences of no more than two loci) that each contained multiple PT, but each PT was found in only one CC, indicating genetic consistency within a CC. MLST has clear utility in studies of ESBL-producing E. coli, based on a greater discriminatory ability and reproducibility than PFGE and the ability to a priori define genetically related bacterial strains
    corecore