1,843 research outputs found
Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium
The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on
the basis of spatio-temporal pattern formation by local
contraction-oscillators. This biological system can be regarded as a
reaction-diffusion system which has spatial interaction by active flow of
protoplasmic sol in the cell. Paying attention to the physiological evidence
that the flow is determined by contraction pattern in the plasmodium, a
reaction-diffusion system having self-determined flow arises. Such a coupling
of reaction-diffusion-advection is a characteristic of the biological system,
and is expected to relate with control mechanism of amoeboid behaviours. Hence,
we have studied effects of the self-determined flow on pattern formation of
simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial
solution, the envelope dynamics follows the complex Ginzburg-Landau type
equation just after bifurcation occurs at finite wave number. The flow term
affects the nonlinear term of the equation through the critical wave number
squared. Contrary to this, wave number isn't explicitly effective with lack of
flow or constant flow. Thus, spatial size of pattern is especially important
for regulating pattern formation in the plasmodium. On the other hand, the flow
term is negligible in the vicinity of bifurcation at infinitely small wave
number, and therefore the pattern formation by simple reaction-diffusion will
also hold. A physiological role of pattern formation as above is discussed.Comment: REVTeX, one column, 7 pages, no figur
Unraveling the enigma: progress towards understanding the coronin family of actin regulators
Coronins are a conserved family of actin cytoskeleton regulators that promote cell motility and modulate other actin-dependent processes. Although these proteins have been known for twenty years, substantial progress has been made in the last five years towards understanding coronins. Here, we review this progress, place it into the context of what was already known and pose several questions that remain to be addressed. In particular, we cover the emerging consensus about the role of Type I coronins in coordinating the function of Arp2/3 complex and ADF/cofilin proteins. This coordination plays an important role in leading edge actin dynamics and overall cell motility. Finally, we discuss the roles played by the more exotic coronins of the Type II and III classes in cellular processes away from the leading edge
Denial at the top table: status attributions and implications for marketing
Senior marketing management is seldom represented on the Board of Directors nowadays, reflecting a deteriorating status of the marketing profession. We examine some of the key reasons for marketing’s demise, and discuss how the status of marketing may be restored by demonstrating the value of marketing to the business community. We attribute marketing’s demise to several related key factors: narrow typecasting, marginalisation and limited involvement in product development, questionable marketing curricula, insensitivity toward environmental change, questionable professional standards and roles, and marketing’s apparent lack of accountability to CEOs. Each of these leads to failure to communicate, create, or deliver value within marketing. We argue that a continued inability to deal with marketing’s crisis of representation will further erode the status of the discipline both academically and professionally
Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion
Invasive cancer cells form dynamic adhesive structures associated with matrix degradation called invadopodia. Calpain 2 is a calcium-dependent intracellular protease that regulates adhesion turnover and disassembly through the targeting of specific substrates such as talin. Here, we describe a novel function for calpain 2 in the formation of invadopodia and in the invasive abilities of breast cancer cells through the modulation of endogenous c-Src activity. Calpain-deficient breast cancer cells show impaired invadopodia formation that is rescued by expression of a truncated fragment of protein tyrosine phosphatase 1B (PTP1B) corresponding to the calpain proteolytic fragment, which indicates that calpain modulates invadopodia through PTP1B. Moreover, PTP1B activity is required for efficient invadopodia formation and breast cancer invasion, which suggests that PTP1B may modulate breast cancer progression through its effects on invadopodia. Collectively, our experiments implicate a novel signaling pathway involving calpain 2, PTP1B, and Src in the regulation of invadopodia and breast cancer invasion
- …