940 research outputs found
NMR study on the stability of the magnetic ground state in MnCrO
The canting angles and fluctuation of the magnetic ion spins of spinel oxide
MnCrO were studied by nuclear magnetic resonance (NMR) at low
temperatures, which has a collinear ferrimagnetic order below and a
ferrimagnetic spiral order below . Contrary to previous reports,
only one spin canting angle of Cr ions was observed. The spin canting angles of
Mn and Cr ions in the ferrimagnetic spiral obtained at a liquid-He temperature
were 43\,^{\circ} and 110\,^{\circ}, respectively. The nuclear spin-spin
relaxation was determined by the Suhl-Nakamura interaction at low temperatures
but the relaxation rate increases rapidly as the temperature
approaches . This indicates that the fluctuation of the spiral component
becomes faster as the temperature increases but not fast enough to leave an
averaged hyperfine field to nuclei in the time scale of nuclear spin precession
in the ferrimagnetic phase, which is on the order of s. The spiral
volume fraction measured for various temperatures reveals that the collinear
and the spiral ferrimagnetic phases are mixed below the transition temperature
of the spiral order. The temperature hysteresis in the volume fraction implies
that this transition has first-order characteristics.Comment: 13 pages, 5 figure
Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature
Transparent electronic materials are increasingly in demand for a variety of
optoelectronic applications. BaSnO3 is a semiconducting oxide with a large band
gap of more than 3.1 eV. Recently, we discovered that La doped BaSnO3 exhibits
unusually high electrical mobility of 320 cm^2(Vs)^-1 at room temperature and
superior thermal stability at high temperatures [H. J. Kim et al. Appl. Phys.
Express. 5, 061102 (2012)]. Following that work, we report various physical
properties of (Ba,La)SnO3 single crystals and films including
temperature-dependent transport and phonon properties, optical properties and
first-principles calculations. We find that almost doping-independent mobility
of 200-300 cm^2(Vs)^-1 is realized in the single crystals in a broad doping
range from 1.0x10^19 to 4.0x10^20 cm^-3. Moreover, the conductivity of ~10^4
ohm^-1cm^-1 reached at the latter carrier density is comparable to the highest
value. We attribute the high mobility to several physical properties of
(Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding,
small disorder effects due to the doping away from the SnO2 conduction channel,
and reduced carrier scattering due to the high dielectric constant. The
observation of a reduced mobility of ~70 cm^2(Vs)^-1 in the film is mainly
attributed to additional carrier-scatterings which are presumably created by
the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main
optical gap of (Ba,La)SnO3 single crystals remained at about 3.33 eV and the
in-gap states only slightly increased, thus maintaining optical transparency in
the visible region. Based on these, we suggest that the doped BaSnO3 system
holds great potential for realizing all perovskite-based, transparent
high-frequency high-power functional devices as well as highly mobile
two-dimensional electron gas via interface control of heterostructured films.Comment: 31 pages, 7 figure
Electron-hole asymmetry in Co- and Mn-doped SrFe2As2
Phase diagram of electron and hole-doped SrFe2As2 single crystals is
investigated using Co and Mn substitution at the Fe-sites. We found that the
spin-density-wave state is suppressed by both dopants, but the superconducting
phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence
of the superconductivity by Mn-doping is in sharp contrast to the hole-doped
system with K-substitution at the Sr sites. Distinct structural change, in
particular the increase of the Fe-As distance by Mn-doping is important to have
a magnetic and semiconducting ground state as confirmed by first principles
calculations. The absence of electron-hole symmetry in the Fe-site-doped
SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive
to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure
Orbital selective Fermi surface shifts and mechanism of high T superconductivity in correlated AFeAs (A=Li,Na)
Based on the dynamical mean field theory (DMFT) and angle resolved
photoemission spectroscopy (ARPES), we have investigated the mechanism of high
superconductivity in stoichiometric LiFeAs. The calculated spectrum is in
excellent agreement with the observed ARPES measurement. The Fermi surface (FS)
nesting, which is predicted in the conventional density functional theory
method, is suppressed due to the orbital-dependent correlation effect with the
DMFT method. We have shown that such marginal breakdown of the FS nesting is an
essential condition to the spin-fluctuation mediated superconductivity, while
the good FS nesting in NaFeAs induces a spin density wave ground state. Our
results indicate that fully charge self-consistent description of the
correlation effect is crucial in the description of the FS nesting-driven
instabilities.Comment: 5 pages, 4 figures, supporting informatio
- โฆ