6,282 research outputs found
Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates
The electronic nematic order characterized by broken rotational symmetry has
been suggested to play an important role in the phase diagram of the high
temperature cuprates. We study the interplay between the electronic nematic
order and a spin density wave order in the presence of a magnetic field. We
show that a cooperation of the nematicity and the magnetic field induces a
finite coupling between the spin density wave and spin-triplet staggered flux
orders. As a consequence of such a coupling, the magnon gap decreases as the
magnetic field increases, and it eventually condenses beyond a critical
magnetic field leading to a field-induced spin density wave order. Both
commensurate and incommensurate orders are studied, and the experimental
implications of our findings are discussed.Comment: 5 pages, 3 figure
Investigating the origin of cyclical wind variability in hot, massive stars - II. Hydrodynamical simulations of co-rotating interaction regions using realistic spot parameters for the O giant Persei
OB stars exhibit various types of spectral variability historically
associated with wind structures, including the apparently ubiquitous discrete
absorption components (DACs). These features have been proposed to be caused
either by magnetic fields or non-radial pulsations. In this second paper of
this series, we revisit the canonical phenomenological hydrodynamical modelling
used to explain the formation of DACs by taking into account modern
observations and more realistic theoretical predictions. Using constraints on
putative bright spots located on the surface of the O giant Persei
derived from high precision space-based broadband optical photometry obtained
with the Microvariability and Oscillations of STars (MOST) space telescope, we
generate two-dimensional hydrodynamical simulations of co-rotating interaction
regions in its wind. We then compute synthetic ultraviolet (UV) resonance line
profiles using Sobolev Exact Integration and compare them with historical
timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate
if the observed behaviour of Persei's DACs is reproduced. Testing three
different models of spot size and strength, we find that the classical pattern
of variability can be successfully reproduced for two of them: the model with
the smallest spots yields absorption features that are incompatible with
observations. Furthermore, we test the effect of the radial dependence of
ionization levels on line driving, but cannot conclusively assess the
importance of this factor. In conclusion, this study self-consistently links
optical photometry and UV spectroscopy, paving the way to a better
understanding of cyclical wind variability in massive stars in the context of
the bright spot paradigm.Comment: 16 pages, 10 figures, accepted for publication by MNRA
Interplay between Fermi surface topology and ordering in URuSi revealed through abrupt Hall coefficient changes in strong magnetic fields
Temperature- and field-dependent measurements of the Hall effect of pure and
4 % Rh-doped URuSi reveal low density (0.03 hole/U) high mobility
carriers to be unique to the `hidden order' phase and consistent with an
itinerant density-wave order parameter. The Fermi surface undergoes a series of
abrupt changes as the magnetic field is increased. When combined with existing
de Haas-van Alphen data, the Hall data expose a strong interplay between the
stability of the `hidden order,' the degree of polarization of the Fermi liquid
and the Fermi surface topology.Comment: 4 pages, 4 figures, Accepted to Phys. Rev. Let
Superfluid density and competing orders in d-wave superconductors
We derive expressions for the superfluid density in the
low-temperature limit in d-wave superconductors, taking into account
the presence of competing orders such as spin-density waves, -pairing, etc. Recent experimental data for the thermal conductivity and
for elastic neutron scattering in LaSrCuO suggest there are
magnetic field induced anomalies that can be interpreted in terms of competing
orders. We consider the implications of these results for the superfluid
density and show in the case of competing spin-density wave order that the
usual Volovik-like depletion of is replaced by a slower
dependence on applied magnetic field. We find that it is crucial to include the
competing order parameter in the self-consistent equation for the impurity
scattering rate.Comment: 17 pages, RevTeX4, 6 EPS figures; final version published in PR
Sound Propagation in Nematic Fermi Liquid
We study the longitudinal sound propagation in the electronic nematic Fermi
liquid where the Fermi surface is distorted due to the spontaneously broken
rotational symmetry. The behavior of the sound wave in the nematic ordered
state is dramatically different from that in the isotropic Fermi liquid. The
collective modes associated with the fluctuations of the Fermi surface
distortion in the nematic Fermi liquid leads to the strong and anisotropic
damping of the sound wave. The relevance of the nematic Fermi liquid in doped
Mott insulator is discussed.Comment: 4 pages, no figur
A Droplet State in an Interacting Two-Dimensional Electron System
It is well known that the dielectric constant of two-dimensional (2D)
electron system goes negative at low electron densities. A consequence of the
negative dielectric constant could be the formation of the droplet state. The
droplet state is a two-phase coexistence region of high density liquid and low
density "gas". In this paper, we carry out energetic calculations to study the
stability of the droplet ground state. The possible relevance of the droplet
state to recently observed 2D metal-insulator transition is also discussed.Comment: 4 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications
Dispersive Gap Mode of Phonons in Anisotropic Superconductors
We estimate the effect of the superconducting gap anisotropy in the
dispersive gap mode of phonons, which is observed by the neutron scattering on
borocarbide superconductors. We numerically analyze the phonon spectrum
considering the electron-phonon coupling, and examine contributions coming from
the gap suppression and the sign change of the pairing function on the Fermi
surface. When the sign of the pairing function is changed by the nesting
translation, the gap mode does not appear. We also discuss the suppression of
the phonon softening of the Kohn anomaly due to the onset of superconductivity.
We demonstrate that observation of the gap dispersive mode is useful for
sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp
- …