24 research outputs found

    Comparative Analysis of Peak Correlation Characteristics of Non-Orthogonal Spreading Codes for Wireless Systems

    Full text link
    The performance of a CDMA based wireless system is largely dependent on the characteristics of pseudo-random spreading codes. The spreading codes should be carefully chosen to ensure highest possible peak value of auto-correlation function and lower correlation peaks (side-lobes) at non-zero time-shifts. Simultaneously, zero cross-correlation value at all time shifts is required in order to eliminate the effect of multiple access interference at the receiver. But no such code family exists which possess both characteristics simultaneously. That's why an exhaustive effort has been made in this paper to evaluate the peak correlation characteristics of various non-orthogonal spreading codes and suggest a suitable solution.Comment: 12 Pages, 8 Figures, 3 Table

    Building Resilient Cloud Over Unreliable Commodity Infrastructure

    Full text link
    Cloud Computing has emerged as a successful computing paradigm for efficiently utilizing managed compute infrastructure such as high speed rack-mounted servers, connected with high speed networking, and reliable storage. Usually such infrastructure is dedicated, physically secured and has reliable power and networking infrastructure. However, much of our idle compute capacity is present in unmanaged infrastructure like idle desktops, lab machines, physically distant server machines, and laptops. We present a scheme to utilize this idle compute capacity on a best-effort basis and provide high availability even in face of failure of individual components or facilities. We run virtual machines on the commodity infrastructure and present a cloud interface to our end users. The primary challenge is to maintain availability in the presence of node failures, network failures, and power failures. We run multiple copies of a Virtual Machine (VM) redundantly on geographically dispersed physical machines to achieve availability. If one of the running copies of a VM fails, we seamlessly switchover to another running copy. We use Virtual Machine Record/Replay capability to implement this redundancy and switchover. In current progress, we have implemented VM Record/Replay for uniprocessor machines over Linux/KVM and are currently working on VM Record/Replay on shared-memory multiprocessor machines. We report initial experimental results based on our implementation.Comment: Oral presentation at IEEE "Cloud Computing for Emerging Markets", Oct. 11-12, 2012, Bangalore, Indi

    Performance Analysis of Antenna Selection Techniques in MIMO-OFDM System with Hardware Impairments: Energy Efficiency perspective

    Get PDF
    In this paper we propose a new MIMO-OFDM model in which we consider various antenna selection techniques like Bulk selection and Per-subcarrier selection etc. with hardware impairments such as non-linearties of amplifiers, quantization noise, phase noise and I-Q imbalance etc. As we know that the transceiver hardware impairments limit the channel capacity and the energy efficiency of MIMO-OFDM system, so we can not neglect the fundamental impacts of these hardware impairments {Kappa  (0.05 0.1)} on the energy efficiency in the high SNR domain. Therefore we analyze the Energy Efficiency of Bulk and Per-subcarrier antenna selection techniques with or without hardware impairments. It has been observed that the energy efficiency decreases as the value of these hardware impairments increases. As we compared the Bulk antenna selection with the Per-subcarrier antenna selection scheme, the Per-subcarrier antenna selection requires more number of RF (radio frequency) chains and transmits power in comparison to the Bulk selection. Due to this, the Bulk antenna selection technique is more energy efficient than Per-subcarrier antenna selection

    Extended Reach 10 Gb/s Transmission with an Optical I/Q Modulator Using VCSELs over OFDM-Based Multimode Fiber Link

    No full text
    This paper investigates the possibilities of extending the reach of a 10 Gb/s orthogonal frequency division multiplexing- (OFDM-) based multimode fiber (MMF) link with an optical I/Q modulation technique through vertical cavity surface emitting lasers (VCSELs). The proposed I/Q modulation technique comprises two VCSELs in a 90° hybrid combination to produce I/Q modulated OFDM signal. The results show the excellent performance (in terms of BER and Q factor) of the direct-detection optical- (DDO-) OFDM system with the proposed I/Q modulation in comparison to the direct modulation case. The proposed system is able to achieve worst-case BER of about 1.8616 × 10−3 and Q factor of about 10.9949 dB over a 5 km MMF link. The I/Q modulation technique in the DDO-OFDM system has further been investigated for extending the transmission reach of the MMF link using multispan configuration

    Energy Efficiency Analysis of Antenna Selection Techniques in Massive MIMO-OFDM System with Hardware Impairments

    No full text
    In massive multiple-input multiple-output (M-MIMO) systems, a large number of antennas increase system complexity as well as the cost of hardware. In this paper, we propose an M-MIMO-OFDM model using per-subcarrier antenna selection and bulk antenna selection schemes to mitigate these problems. Also, we derive a new uplink and downlink energy efficiency (EE) equation for the M-MIMO-OFDM system by taking into consideration the antenna selection schemes, power scaling factor (g=0.25,  0.5), and a range of hardware impairments {κBS, κUEϵ (0, 0.052, 0.12)}. In addition, we investigate a trend of EE by varying various parameters like number of base station antennas (BSAs), SNR, level of hardware impairments, total circuit power consumption, power optimization, antenna selection schemes, and power scaling factor in the proposed M-MIMO-OFDM model. The simulation results thus obtained show that the EE increases with increase in the value of SNR. Also, it increases abruptly up to 100 number of BSA. However, the increase in the EE is not significant in the range of 125 to 400 number of BSA. Further, the bulk antenna selection technique has comparatively more EE than the per-subcarrier antenna selection. Moreover, EE gaps between antenna selection schemes decrease with increase in the value of hardware impairments and power scaling factor. However, as the hardware degradation effect increases, the EE of the bulk antenna selection scheme suffers more degradation as compared to the Per-subcarrier antenna selection scheme. It has also been observed that EE performance is inversely proportional to the total circuit power consumption (λ+γ) and it increases with the power optimization

    Performance Analysis of a Modified SC-FDMA-DSCDMA Technique for 4G Wireless Communication

    No full text
    Single-carrier FDMA (SC-FDMA) is becoming more and more popular in multiuser communication because of its lower PAPR value. Apart from this, many other hybrid access techniques have also been explored in the literature for application to 4G wireless mobile communication. Still there is a need to explore newer techniques which could further reduce the PAPR value without any degradation in system BER. Keeping this in view, a modified hybrid technique SC-FDMA-DSCDMA has been proposed in this paper and it is found to provide significantly lower PAPR than SC-FDMA system with no degradation in BER performance. This paper extensively compares the BER and PAPR performance of various other multicarrier techniques for 4G wireless communications such as OFDMA, MC-DS-CDMA, and SC-FDMA with proposed SC-FDMA-DSCDMA scheme. Simulation results show that SC-FDMA-DSCDMA technique performs better than any other OFDM-CDMA based system for wireless communication

    Investigation and Suppression of Fiber Nonlinearities Using Injection-Locking in OFDM-WDM System

    No full text
    The fiber nonlinearities play a major role in optical communication with respect to the system performance and transmission capacity. Here, fiber nonlinear impairments are investigated through consideration of several parameters of optical fiber system, such as fiber length and core effective area. We also demonstrate the mitigation of fiber nonlinearities by using single-stage injection-locking in 3 × 10 Gb/s OFDM-WDM system. This paper focuses on selection of appropriate bias current for slave laser to suppress the four wave mixing (FWM) crosstalk effects. These findings resemble the importance of single-stage injection-locking for FWM suppression for high-speed data communication

    Quantifying molecular aggregation by super resolution microscopy within an excitatory synapse from mouse hippocampal neurons

    No full text
    Summary: Super-resolution microscopy (SRM) has been widely adopted to probe molecular distribution at excitatory synapses. We present an SRM paradigm to evaluate the nanoscale organization heterogeneity between neuronal subcompartments. Using mouse hippocampal neurons, we describe the identification of the morphological characteristics of nanodomains within functional zones of a single excitatory synapse. This information can be used to correlate structure and function at molecular resolution in single synapses. The protocol can be applied to immunocytochemical/histochemical samples across different imaging paradigms.For complete details on the use and execution of this protocol, please refer to Kedia et al. (2021)
    corecore