263 research outputs found

    Quasi-particles in Fractional Quantum Hall Effect Edge Theories

    Get PDF
    We propose a quasi-particle formulation of effective edge theories for the fractional quantum Hall effect. For the edge of a Laughlin state with filling fraction \nu=1/m, our fundamental quasi-particles are edge electrons of charge -e and edge quasi-holes of charge +e/m. These quasi-particles satisfy exclusion statistics in the sense of Haldane. We exploit algebraic properties of edge electrons to derive a kinetic equation for charge transport between a \nu=1/m fractional quantum Hall edge and a normal metal. We also analyze alternative `Boltzmann' equations that are directly based on the exclusion statistics properties of edge quasi-particles. Generalizations to more general filling fractions (Jain series) are briefly discussed.Comment: 20 pages, 2 eps figures, revtex, references updated, Phys. Rev. B in pres

    Efficient quantum computing with weak measurements

    Full text link
    Projective measurements with high quantum efficiency is often assumed to be required for efficient circuit based quantum computing. We argue that this is not the case and show that this fact has actually be known previously though not deeply explored. We examine this issue by giving an example of how to perform the quantum ordering finding algorithm efficiently using non-local weak measurements given that the measurements used are of bounded weakness and some fixed but arbitrary probability of success less than unity is required. We also show that it is possible to perform the same computation with only local weak measurements but this must necessarily introduce an exponential overhead

    Energy Transduction of Isothermal Ratchets: Generic Aspects and Specific Examples Close to and Far from Equilibrium

    Full text link
    We study the energetics of isothermal ratchets which are driven by a chemical reaction between two states and operate in contact with a single heat bath of constant temperature. We discuss generic aspects of energy transduction such as Onsager relations in the linear response regime as well as the efficiency and dissipation close to and far from equilibrium. In the linear response regime where the system operates reversibly the efficiency is in general nonzero. Studying the properties for specific examples of energy landscapes and transitions, we observe in the linear response regime that the efficiency can have a maximum as a function of temperature. Far from equilibrium in the fully irreversible regime, we find a maximum of the efficiency with values larger than in the linear regime for an optimal choice of the chemical driving force. We show that corresponding efficiencies can be of the order of 50%. A simple analytic argument allows us to estimate the efficiency in this irreversible regime for small external forces.Comment: 16 pages, 10 figure

    Membranes by the Numbers

    Get PDF
    Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this article, I review the quantitative parameters that characterize the mechanical, electrical and transport properties of membranes and carry out a number of corresponding order of magnitude estimates that help us understand the values of those parameters.Comment: 27 pages, 12 figure

    T-systems and Y-systems in integrable systems

    Full text link
    The T and Y-systems are ubiquitous structures in classical and quantum integrable systems. They are difference equations having a variety of aspects related to commuting transfer matrices in solvable lattice models, q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, cluster algebras with coefficients, periodicity conjectures of Zamolodchikov and others, dilogarithm identities in conformal field theory, difference analogue of L-operators in KP hierarchy, Stokes phenomena in 1d Schr\"odinger problem, AdS/CFT correspondence, Toda field equations on discrete space-time, Laplace sequence in discrete geometry, Fermionic character formulas and combinatorial completeness of Bethe ansatz, Q-system and ideal gas with exclusion statistics, analytic and thermodynamic Bethe ans\"atze, quantum transfer matrix method and so forth. This review article is a collection of short reviews on these topics which can be read more or less independently.Comment: 156 pages. Minor corrections including the last paragraph of sec.3.5, eqs.(4.1), (5.28), (9.37) and (13.54). The published version (JPA topical review) also needs these correction

    Modulation of the NF-κB Pathway by Bordetella pertussis Filamentous Hemagglutinin

    Get PDF
    Background Filamentous hemagglutinin (FHA) is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-κB transcription factor family in these host cell responses, we examined the effect of FHA on NF-κB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection. Methodology/Principal Findings Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-κB pathway, as manifested by the degradation of cytosolic IκBα, by NF-κB DNA binding, and by the subsequent secretion of NF-κB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IκBα, and the failure of TNF-α to activate NF-κB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells. Conclusions These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-κB activation, and perhaps lead to a compromised immune response to this bacterial pathogen

    Characters for sl(n)^k=1\hat{sl(n)}_{k=1} from a novel Thermodynamic Bethe Ansatz

    Full text link
    Motivated by the recent development on the exact thermodynamics of 1D quantum systems, we propose quasi-particle like formulas for sl(n)^k=1\hat{\mathfrak{sl}(n)}_{k=1} characters. The sl(2)^k=1\hat{\mathfrak{sl}(2)}_{k=1} case is re-examined first. The novel formulation yields a direct connection to the fractional statistics in the short range interacting model, and provides a clear description of the spinon character formula. Generalizing the observation, we find formulas for sl(n)^k=1\hat{\mathfrak{sl}(n)}_{k=1}, which can be proved by the Durfee rectangle formula.Comment: 13 pages, Latex 2

    Convergent algorithms for protein structural alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity.</p> <p>Results</p> <p>In this work, the maximization of scoring functions in protein alignment is interpreted as a Low Order Value Optimization (LOVO) problem. The new interpretation provides a framework for the development of algorithms based on well established methods of continuous optimization. The resulting algorithms are convergent and <it>increase the scoring functions at every iteration</it>. The solutions obtained are critical points of the scoring functions. Two algorithms are introduced: One is based on the maximization of the scoring function with Dynamic Programming followed by the continuous maximization of <it>the same </it>score, with respect to the protein position, using a smooth Newtonian method. The second algorithm replaces the Dynamic Programming step by a fast procedure for computing the correspondence between C<it>α </it>atoms. The algorithms are shown to be very effective for the maximization of the STRUCTAL score.</p> <p>Conclusion</p> <p>The interpretation of protein alignment as a LOVO problem provides a new theoretical framework for the development of convergent protein alignment algorithms. These algorithms are shown to be very reliable for the maximization of the STRUCTAL score, and other distance-dependent scores may be optimized with same strategy. The improved score optimization provided by these algorithms provide means for the refinement of protein fold maps and also for the development of scores designed to match biological function. The LOVO strategy may be also used for more general structural superposition problems such as flexible or non-sequential alignments. The package is available on-line at http://www.ime.unicamp.br/~martinez/lovoalign.</p

    An enhanced partial order curve comparison algorithm and its application to analyzing protein folding trajectories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them.</p> <p>Results</p> <p>In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the <it>enhanced partial order (EPO) </it>algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.</p> <p>Conclusion</p> <p>The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at <url>http://db.cse.ohio-state.edu/EPO</url>.</p
    • …
    corecore