572 research outputs found
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
The true cost of hidden waiting times for cataract surgery in Australia
Cataract surgery is a safe, effective and common elective procedure in Australia but access is inequitable. True waiting times for cataract care are undisclosed or inconsistently reported by governments. Estimates of true waiting times range from 4 to 30 months and have been extended during the coronavirus disease 2019 (COVID-19) pandemic. Comparative analysis revealed that reducing waiting periods from 12 to 3 months would result in estimated public health system cost savings of $6.6 million by preventing 50 679 falls. Investment in public cataract services to address current unmet needs would prevent avoidable vision impairment and associated negative consequences
Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices
We present an analytical study of one-dimensional semiconductor superlattices
in external electric fields, which may be time-dependent. A number of general
results for the (quasi)energies and eigenstates are derived. An equation of
motion for the density matrix is obtained for a two-band model, and the
properties of the solutions are analyzed. An expression for the current is
obtained. Finally, Zener-tunneling in a two-band tight-binding model is
considered. The present work gives the background and an extension of the
theoretical framework underlying our recent Letter [J. Rotvig {\it et al.},
Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations
were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache
Quantum metastability in a class of moving potentials
In this paper we consider quantum metastability in a class of moving
potentials introduced by Berry and Klein. Potential in this class has its
height and width scaled in a specific way so that it can be transformed into a
stationary one. In deriving the non-decay probability of the system, we argue
that the appropriate technique to use is the less known method of scattering
states. This method is illustrated through two examples, namely, a moving
delta-potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite non-decay probability persists at large times.
Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
Resonant Photon-Assisted Tunneling Through a Double Quantum Dot: An Electron Pump From Spatial Rabi Oscillations
The time average of the fully nonlinear current through a double quantum dot,
subject to an arbitrary combination of ac and dc voltages, is calculated
exactly using the Keldysh nonequilibrium Green function technique. When driven
on resonance, the system functions as an efficient electron pump due to Rabi
oscillation between the dots. The pumping current is maximum when the coupling
to the leads equals the Rabi frequency.Comment: 6 pages, REVTEX 3.0, 3 postscript figure
An Anisotropic Wormhole:TUNNELLING in Time and Space
We discuss the structure of a gravitational euclidean instanton obtained
through coupling of gravity to electromagnetism. Its topology at fixed is
. This euclidean solution can be interpreted as a tunnelling to
a hyperbolic space (baby universe) at or alternatively as a static
wormhole that joins the two asymptotically flat spaces of a
Reissner--Nordstr\"om type solution with .Comment: PLAIN-TEX, 16 pages (4 figures not included), Report DFTT 2/9
wormholes and topological charge
I investigate solutions to the Euclidean Einstein-matter field equations with
topology in a theory with a massless periodic scalar
field and electromagnetism. These solutions carry winding number of the
periodic scalar as well as magnetic flux. They induce violations of a
quasi-topological conservation law which conserves the product of magnetic flux
and winding number on the background spacetime. I extend these solutions to a
model with stable loops of superconducting cosmic string, and interpret them as
contributing to the decay of such loops.Comment: 18 pages (includes 6 figs.), harvmac and epsf, CU-TP-62
Can Age or Height Define Appropriate Thresholds for Transition to Adult Seat Belts? An Analysis of Observed Seat Belt Fit in Children Aged 7–12 Years
This study aimed to investigate associations between demographic, anthropometric and vehicle factors and the fit of adult seat belts in children aged 7–12 years in passenger vehicles. Seat belt fit was assessed by inspection of 7–12-year-old children in their own cars. Logistic regressions examined associations between anthropometric and vehicle factors on achieving good seat belt fit. There were 40 participants included in the analysis, with 16 (40%) having good overall belt fit. The odds of achieving good overall seat belt fit increased by 15% (OR 1.15, 95% CI 1.04–1.27) with every centimeter increase in height and increased by 5% with every one-month increase in age (OR 1.045, 95% CI 1.001–1.10). Controlling for vehicle factors, neither age or height was significantly associated with overall good belt fit, and the discriminatory power of models including these metrics to predict good belt fit was 73% (AUC 0.73, 95% CI 0.55–0.91) and 74% (AUC 0.74, 95% CI 0.58–0.91). The results suggest that taller and older children have a better chance of achieving a good seat belt fit. However, with variations in seat geometry between vehicles, no single simple metric clearly defines an appropriate transition to the adult seat belt
Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons
We calculate the contribution of the photon-assisted interaction of electrons
with leaky interface phonons to the dissipative dc photoconductivity of a
two-dimensional electron system in a magnetic field. The calculated
photoconductivity as a function of the frequency of microwave radiation and the
magnetic field exhibits pronounced oscillations. The obtained oscillation
structure is different from that in the case of photon-assisted interaction
with impurities. We demonstrate that at a sufficiently strong microwave
radiation in the certain ranges of its frequency (or in certain ranges of the
magnetic field) this mechanism can result in the absolute negative
conductivity.Comment: 3 pages, 1 figur
Linear optical absorption spectra of mesoscopic structures in intense THz fields: free particle properties
We theoretically study the effect of THz radiation on the linear optical
absorption spectra of semiconductor structures. A general theoretical
framework, based on non-equilibrium Green functions, is formulated, and applied
to the calculation of linear optical absorption spectrum for several
non-equilibrium mesoscopic structures. We show that a blue-shift occurs and
sidebands appear in bulk-like structures, i.e., the dynamical Franz-Keldysh
effect [A.-P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)]. An
analytic calculation leads to the prediction that in the case of superlattices
distinct stable steps appear in the absorption spectrum when conditions for
dynamical localization are met.Comment: 13 Pages, RevTex using epsf to include 8 ps figures. Submitted to
Phys. Rev. B (3 April 97
- …