67 research outputs found
Synthesis of Substituted Dihydrobenzofurans via Tandem S_NAr/5-Exo-Trig Cyclization
A tandem S_NAr/5-exo-trig cyclization reaction is reported that converts N-alkyl- and -arylimines derived from o-fluorobenzaldehydes into 3-amino-2,3-dihydro-2,2-diarylbenzofurans in moderate to good yields. Diarylmethoxide coupling partners serve the dual role of nucleophile in the S_NAr step and catalytic base in the cyclization step. With a subset of the substrates, a further base-induced elimination of the 3-amino-2,3-dihydro-2,2-diarylbenzofuran to a phenolic enamine was observed
An S_NAr Approach to Sterically Hindered ortho-Alkoxybenzaldehydes for the Synthesis of Olefin Metathesis Catalysts
A three-step procedure has been developed for preparing ortho-alkoxybenzaldehydes from ortho-fluorobenzaldehydes that tolerates the use of sterically hindered sodium alkoxide nucleophiles. The protocol is modular and operationally convenient. The ortho-alkoxybenzaldehyde products can be converted in one additional step to ortho-alkoxystyrenes by a Wittig reaction. These styrenes are precursors to the chelating benzylidene moiety in a proposed series of novel ruthenium complexes for use in olefin metathesis. Chelation with three representative styrenes has been demonstrated
Z-Selective Cross-Metathesis and Homodimerization of 3E-1,3-Dienes: Reaction Optimization, Computational Analysis, and Synthetic Applications
Olefin metathesis reactions with 3E-1,3-dienes using Z-selective cyclometalated ruthenium benzylidene catalysts are described. In particular, a procedure for employing 3E-1,3-dienes in Z-selective homodimerization and cross-metathesis with terminal alkenes is detailed. The reaction takes advantage of the pronounced chemoselectivity of a recently reported ruthenium-based catalyst containing a cyclometalated NHC ligand for terminal alkenes in the presence of internal E-alkenes. A wide array of commonly encountered functional groups can be tolerated, and only a small excess (1.5 equiv) of the diene coupling partner is required to achieve high yields of the desired internal E,Z-diene cross-metathesis product. Computational studies have been performed to elucidate the reaction mechanism. The computations are consistent with a diene-first pathway. The reaction can be used to quickly assemble structurally complex targets. The power of this cross-metathesis reaction is demonstrated by the concise syntheses of two insect pheromones
Tridentate Directing Groups Stabilize 6-Membered Palladacycles in Catalytic Alkene Hydrofunctionalization
Removable tridentate directing groups
inspired by pincer ligands
have been designed to stabilize otherwise kinetically and thermodynamically
disfavored 6-membered alkyl palladacycle intermediates. This family
of directing groups enables regioselective remote hydrocarbofunctionalization
of several synthetically useful alkene-containing substrate classes,
including 4-pentenoic acids, allylic alcohols, homoallyl amines, and
bis-homoallylamines, under PdÂ(II) catalysis. In conjunction with previous
findings, we demonstrate regiodivergent hydrofunctionalization of
3-butenoic acid derivatives to afford either Markovnikov or anti-Markovnikov
addition products depending on directing group choice. Preliminary
mechanistic and computational data are presented to support the proposed
catalytic cycle
Hydrogen-Bonded Homoleptic Fluoride–Diarylurea Complexes::Structure, Reactivity, and Coordinating Power
Hydrogen-bonding with fluoride is a key interaction encountered when analyzing the mode of action of 5'-fluoro-5'-deoxyadenosine synthase, the only known enzyme capable of catalyzing the formation of a C-F bond from F-. Further understanding of the effect of hydrogen-bonding on the structure and reactivity of complexed fluoride is therefore important for catalysis and numerous other applications, such as anion supramolecular chemistry. Herein we disclose a detailed study examining the structure of 18 novel urea-fluoride complexes in the solid state, by X-ray and neutron diffraction, and in solution phase and explore the reactivity of these complexes as a fluoride source in SN2 chemistry. Experimental data show that the structure, coordination strength and reactivity of the urea-fluoride complexes are tunable by modifying substituents on the urea receptor. Hammett analysis of aryl groups on the urea indicates that fluoride bind-ing is dependent on [sigma]p and [sigma]m parameters with stronger binding being observed for electron-deficient urea ligands. For the first time, defined urea-fluoride complexes are used as fluoride-binding reagents for the nucleophilic substitution of a model alkyl bromide. The reaction is slower in comparison with known alcohol-fluoride complexes, but SN2 is largely favored over E2, at a ratio surpassing all hydrogen-bonded complexes documented in the literature for the model alkyl bromide employed. Increased second-order rate constants at higher dilution support the hypothesis that the reactive species is a 1:1 urea-fluoride complex of type [UF]- (U = urea) resulting from partial dissociation of the parent compound [U2F]- . The dissociation processes can be quantified through a combination of UV and NMR assays, including DOSY and HOESY analyses that illuminate the complexation state and H-bonding in solution
Origins of Initiation Rate Differences in Ruthenium Olefin Metathesis Catalysts Containing Chelating Benzylidenes
A series of second-generation ruthenium olefin metathesis catalysts was investigated using a combination of reaction kinetics, X-ray crystallography, NMR spectroscopy, and DFT calculations in order to determine the relationship between the structure of the chelating o-alkoxybenzylidene and the observed initiation rate. Included in this series were previously reported catalysts containing a variety of benzylidene modifications as well as four new catalysts containing cyclopropoxy, neopentyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. The initiation rates of this series of catalysts were determined using a UV/vis assay. All four new catalysts were observed to be faster-initiating than the corresponding isopropoxy control, and the 2-adamantyloxy catalyst was found to be among the fastest-initiating Hoveyda-type catalysts reported to date. Analysis of the X-ray crystal structures and computed energy-minimized structures of these catalysts revealed no correlation between the Ru–O bond length and Ru–O bond strength. On the other hand, the initiation rate was found to correlate strongly with the computed Ru–O bond strength. This latter finding enables both the rationalization and prediction of catalyst initiation through the calculation of a single thermodynamic parameter in which no assumptions about the mechanism of the initiation step are made
An Initiation Kinetics Prediction Model Enables Rational Design of Ruthenium Olefin Metathesis Catalysts Bearing Modified Chelating Benzylidenes
Rational design of second-generation ruthenium olefin metathesis catalysts with desired initiation rates can be enabled by a computational model that is dependent on a single thermodynamic parameter. Using a computational model with no assumption about the specific initiation mechanism, the initiation kinetics of a spectrum of second-generation ruthenium olefin metathesis catalysts bearing modified chelating ortho-alkoxy benzylidenes were predicted in this work. Experimental tests of the validity of the computational model were achieved by the synthesis of a series of ruthenium olefin metathesis catalysts and investigation of initiation rates by ultraviolet–visible light (UV-vis) kinetics, nuclear magnetic resonance (NMR) spectroscopy, and structural characterization by X-ray crystallography. Included in this series of catalysts were 13 catalysts bearing alkoxy groups with varied steric bulk on the chelating benzylidene, ranging from ethoxy to dicyclohexylmethoxy groups. The experimentally observed initiation kinetics of the synthesized catalysts were in good accordance with computational predictions. Notably, the fast initiation rate of the dicyclohexylmethoxy catalyst was successfully predicted by the model, and this complex is believed to be among the fastest initiating Hoveyda–Grubbs-type catalysts reported to date. The compatibility of the predictive model with other catalyst families, including those bearing alternative N-heterocyclic carbene (NHC) ligands or disubstituted alkoxy benzylidenes, was also examined
- …