86 research outputs found

    The dual-acting chemotherapeutic agent Alchemix induces cell death independently of ATM and p53

    Get PDF
    YesTopoisomerase inhibitors are in common use as chemotherapeutic agents although they can display reduced efficacy in chemotherapy-resistant tumours, which have inactivated DNA damage response (DDR) genes, such as ATM and TP53. Here, we characterise the cellular response to the dual-acting agent, Alchemix (ALX), which is a modified anthraquinone that functions as a topoisomerase inhibitor as well as an alkylating agent. We show that ALX induces a robust DDR at nano-molar concentrations and this is mediated primarily through ATR- and DNA-PK- but not ATM-dependent pathways, despite DNA double strand breaks being generated after prolonged exposure to the drug. Interestingly, exposure of epithelial tumour cell lines to ALX in vitro resulted in potent activation of the G2/M checkpoint, which after a prolonged arrest, was bypassed allowing cells to progress into mitosis where they ultimately died by mitotic catastrophe. We also observed effective killing of lymphoid tumour cell lines in vitro following exposure to ALX, although, in contrast, this tended to occur via activation of a p53-independent apoptotic pathway. Lastly, we validate the effectiveness of ALX as a chemotherapeutic agent in vivo by demonstrating its ability to cause a significant reduction in tumour cell growth, irrespective of TP53 status, using a mouse leukaemia xenograft model. Taken together, these data demonstrate that ALX, through its dual action as an alkylating agent and topoisomerase inhibitor, represents a novel anti-cancer agent that could be potentially used clinically to treat refractory or relapsed tumours, particularly those harbouring mutations in DDR genes

    Measurement of a small atmospheric νμ/νe\nu_\mu/\nu_e ratio

    Full text link
    From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900 muon-like and 983 electron-like single-ring atmospheric neutrino interactions were detected with momentum pe>100p_e > 100 MeV/cc, pμ>200p_\mu > 200 MeV/cc, and with visible energy less than 1.33 GeV. Using a detailed Monte Carlo simulation, the ratio (μ/e)DATA/(μ/e)MC(\mu/e)_{DATA}/(\mu/e)_{MC} was measured to be 0.61±0.03(stat.)±0.05(sys.)0.61 \pm 0.03(stat.) \pm 0.05(sys.), consistent with previous results from the Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure

    Measurement of radon concentrations at Super-Kamiokande

    Full text link
    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m3^3.Comment: 11 pages, 4 figure

    Calibration of Super-Kamiokande Using an Electron Linac

    Get PDF
    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM

    Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3 GeV wide band muon neutrino beam

    Full text link
    Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.Comment: 6 pages, 4 figures, Submitted to Phys. Lett.

    Measurement of the residual energy of muons in the Gran Sasso underground Laboratories

    Full text link
    The MACRO detector was located in the Hall B of the Gran Sasso underground Laboratories under an average rock overburden of 3700 hg/cm^2. A transition radiation detector composed of three identical modules, covering a total horizontal area of 36 m^2, was installed inside the empty upper part of the detector in order to measure the residual energy of muons. This paper presents the measurement of the residual energy of single and double muons crossing the apparatus. Our data show that double muons are more energetic than single ones. This measurement is performed over a standard rock depth range from 3000 to 6500 hg/cm^2.Comment: 28 pages, 9 figure

    Muon Energy Estimate Through Multiple Scattering with the Macro Detector

    Get PDF
    Muon energy measurement represents an important issue for any experiment addressing neutrino induced upgoing muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDC's included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for Eμ<E_\mu<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.

    Low energy atmospheric muon neutrinos in MACRO

    Get PDF
    We present the measurement of two event samples induced by atmospheric νμ\nu_\mu of average energy Eˉν4GeV \bar {E}_\nu \sim 4 GeV. In the first sample, the neutrino interacts inside the MACRO detector producing an upward-going muon leaving the apparatus. The ratio of the number of observed to expected events is 0.57±0.05stat±0.06syst±0.14theor 0.57 \pm0.05_{stat} \pm0.06_{syst} \pm0.14_{theor} with an angular distribution similar to that expected from the Bartol atmospheric neutrino flux. The second is a mixed sample of internally produced downward-going muons and externally produced upward-going muons stopping inside the detector. These two subsamples are selected by topological criteria; the lack of timing information makes it impossible to distinguish stopping from downgoing muons. The ratio of the number of observed to expected events is 0.71±0.05stat±0.07syst±0.18theor0.71 \pm 0.05_{stat} \pm0.07_{syst} \pm0.18_{theor} . Using the ratio of the two subsamples (for which most theoretical uncertainties cancel) we can test the pathlength dependence of the oscillation hypothesis. The probability of agreement with the no-oscillation hypothesis is 5% . The deviations of our observations from the expectations has a preferred interpretation in terms of νμ\nu_\mu oscillations with maximal mixing and Δm2103÷102eV2\Delta m^2 \sim 10^{-3} \div 10^{-2} eV^2. These parameters are in agreement with our results from upward throughgoing muons, induced by νμ\nu_\mu of much higher energies.Comment: 7 pages, 6 figures. Submitted to Phys. Lett.

    Search for diffuse neutrino flux from astrophysical sources with MACRO

    Get PDF
    Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high energy upward-going muons among the sample of data collected by MACRO during ~5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7 10^(-14) cm^(-2) s^(-1) sr^(-1). The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments.Comment: 19 pages, 8 figures, 2 table

    Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO

    Get PDF
    We present a measurement of the flux of neutrino-induced upgoing muons (~100 GeV) using the MACRO detector. The ratio of the number of observed to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat) +/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of the detector has been extensively studied using downgoing muons, independent analyses and Monte-Carlo simulations. The other systematic uncertainties cannot be the source of the discrepancies between the data and expectations. We have investigated whether the observed number of events and the shape of the zenith distribution can be explained by a neutrino oscillation hypothesis. Fitting either the flux or zenith distribution independently yields mixing parameters of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the observed zenith distribution does not fit well with any expectations giving a maximum probability for chi^2 of 5% for the best oscillation hypothesis, and the combined probability for the shape and number of events is 17%. We conclude that these data favor a neutrino oscillation hypothesis, but with unexplained structure in the zenith distribution not easily explained by either the statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
    corecore