11,419 research outputs found
Negatively Correlated Search
Evolutionary Algorithms (EAs) have been shown to be powerful tools for
complex optimization problems, which are ubiquitous in both communication and
big data analytics. This paper presents a new EA, namely Negatively Correlated
Search (NCS), which maintains multiple individual search processes in parallel
and models the search behaviors of individual search processes as probability
distributions. NCS explicitly promotes negatively correlated search behaviors
by encouraging differences among the probability distributions (search
behaviors). By this means, individual search processes share information and
cooperate with each other to search diverse regions of a search space, which
makes NCS a promising method for non-convex optimization. The cooperation
scheme of NCS could also be regarded as a novel diversity preservation scheme
that, different from other existing schemes, directly promotes diversity at the
level of search behaviors rather than merely trying to maintain diversity among
candidate solutions. Empirical studies showed that NCS is competitive to
well-established search methods in the sense that NCS achieved the best overall
performance on 20 multimodal (non-convex) continuous optimization problems. The
advantages of NCS over state-of-the-art approaches are also demonstrated with a
case study on the synthesis of unequally spaced linear antenna arrays
High-dimensional Black-box Optimization via Divide and Approximate Conquer
Divide and Conquer (DC) is conceptually well suited to high-dimensional
optimization by decomposing a problem into multiple small-scale sub-problems.
However, appealing performance can be seldom observed when the sub-problems are
interdependent. This paper suggests that the major difficulty of tackling
interdependent sub-problems lies in the precise evaluation of a partial
solution (to a sub-problem), which can be overwhelmingly costly and thus makes
sub-problems non-trivial to conquer. Thus, we propose an approximation
approach, named Divide and Approximate Conquer (DAC), which reduces the cost of
partial solution evaluation from exponential time to polynomial time.
Meanwhile, the convergence to the global optimum (of the original problem) is
still guaranteed. The effectiveness of DAC is demonstrated empirically on two
sets of non-separable high-dimensional problems.Comment: 7 pages, 2 figures, conferenc
- …