3 research outputs found
Preparation and characterization of a novel triple composite scaffold containing silk fibroin, chitosan, extracellular matrix and the mechanism of Akt/FoxO signaling pathway in colonic cancer cells cultured in 3D
This work examined the physical and chemical properties and biocompatibility in vivo and in vitro of a unique triple composite scaffold incorporating silk fibroin, chitosan, and extracellular matrix. The materials were blended, cross-linked, and freeze-dried to create a composite scaffold of silk fibroin/chitosan/colon extracellular matrix (SF/CTS/CEM) with varying CEM contents. The SF/CTS/CEM (1:1:1) scaffold demonstrated the preferable shape, outstanding porosity, favorable connectivity, good moisture absorption, and acceptable and controlled swelling and degradation properties. Additionally, HCT-116 cells cultivated with SF/CTS/CEM (1:1:1) showed excellent proliferation capacity, cell malignancy, and delayed apoptosis, according to the in vitro cytocompatibility examination. We also examined the PI3K/PDK1/Akt/FoxO signaling pathway and discovered that cell culture using a SF/CTS/CEM (1:1:1) scaffold may prevent cell death by phosphorylating Akt and suppressing FoxO expression. Our findings demonstrate the potential of the SF/CTS/CEM (1:1:1) scaffold as an experimental model for colonic cancer cell culture and for replicating the three-dimensional in vivo cell growth environment
GABRD promotes progression and predicts poor prognosis in colorectal cancer
Little is known about the functional roles of gamma-aminobutyric acid type A receptor subunit delta (GABRD) in colorectal cancer (CRC). The expression of GABRD between CRCs and adjacent normal tissues (NTs), metastasis and primary tumors was compared using public transcriptomic datasets. A tissue microarray and immunohistochemical staining (IHC) were used to determine the clinical and prognostic significance of the GABRD in CRC. We used gain-of-function and loss-of-function experiments to investigate the in vitro roles of GABRD in cultured CRC cells. We characterized the potential mechanism of GABRD’s activities in CRC using a Gene Set Enrichment Analysis (GSEA) with The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset. We found that the GABRD expression was significantly increased in CRCs compared to that in NTs, but was similar between metastasis and primary tumors. Overexpression of GABRD was significantly associated with later pTNM stages and unfavorable patient survival. Overexpression of GABRD accelerated while knock-down of GABRD inhibited cell growth and migration. Mechanistically, the function of GABRD might be ascribed to its influence on major oncogenic events such as epithelial–mesenchymal transition (EMT), angiogenesis, and hedgehog signaling. Collectively, GABRD could be a novel prognostic predictor for CRC that deserves further investigation