95 research outputs found

    Urban Growth and Heat in Tropical Climates

    Get PDF
    This research describes the change in temperatures across approximately 270 tropical cities from 1960 to 2020 with a focus on urban warming. It associates urban growth indicators with temperature variations in tropical climate zones (tropical rainforest, tropical monsoon, and tropical wet-dry savanna). Our findings demonstrate that over time while temperatures have increased across the tropics, urban residents have experienced higher temperatures (minimum and maximum) than those living outside of cities. Moreover, in certain tropical zones, over the study period, temperatures have risen faster in urban areas than the background (non-urban) temperatures. The results also suggest that with continuing climate change and urban growth, temperatures will continue to rise at higher than background levels in tropical cities unless mitigation measures are implemented. Several fundamental characteristics of urban growth including population size, population density, infrastructure and urban land use patterns are factors associated with variations in temperatures. We find evidence that dense urban forms (compact residential and industrial developments) are associated with higher temperatures and population density is a better predictor of variation in temperatures than either urban population size or infrastructure in most tropic climate zones. Infrastructure, however, is a better predictor of temperature increases in wet-dry savanna tropical climates than population density. There are a number of potential mitigation measures available to urban managers to address heat. We focus on ecological services, but whether these services can address the projected increasing heat levels is unclear. More local research is necessary to untangle the various contributions to increasing heat in cities and evaluate whether these applications can be effective to cool tropical cities as temperature continue to rise. Our methods include combining several different datasets to identify differences in daily, seasonal, and annual maximum and minimum temperatures

    Spatially Explicit Population Projections:The case of Copenhagen, Denmark

    Get PDF

    Geospatial Privacy and Security

    Get PDF

    Uncovering spatiotemporal biases in place-based social sensing

    Get PDF

    Geospatial Privacy and Security

    Get PDF

    Spatial Disaggregation of Population Subgroups Leveraging Self-Trained Multi-Output Gradient Boosting Regression Trees

    Get PDF
    Accurate and consistent estimations on the present and future population distribution, at fine spatial resolution, are fundamental to support a variety of activities. However, the sampling regime, sample size, and methods used to collect census data are heterogeneous across temporal periods and/or geographic regions. Moreover, the data is usually only made available in aggregated form, to ensure privacy. In an attempt to address these issues, several previous initiatives have addressed the use of spatial disaggregation methods to produce high-resolution gridded datasets describing the human population distribution, although these projects have usually not addressed specific population subgroups. This paper describes a spatial disaggregation method based on self-training regression models, innovating over previous studies in the simultaneous prediction of disaggregated counts for multiple inter-related variables, by leveraging multi-output models based on gradient tree boosting. We report on experiments for two case studies, using high-resolution data (i.e., counts for different subgroups available at a resolution of 100 meters) for the municipality of Amsterdam and the region of Greater Copenhagen. Results show that the proposed approach can capture spatial heterogeneity and the dependency on local factors, outperforming alternatives (e.g., seminal disaggregation algorithms, or approaches leveraging individual regression models for each variable) in terms of averaged error metrics, and also upon visual inspection of spatial variation in the resulting maps.</p
    corecore