13 research outputs found

    Perfluorochemical Liquid-Adenovirus Suspensions Enhance Gene Delivery to the Distal Lung

    Get PDF
    We compared lung delivery methods of recombinant adenovirus (rAd): (1) rAd suspended in saline, (2) rAd suspended in saline followed by a pulse-chase of a perfluorochemical (PFC) liquid mixture, and (3) a PFC-rAd suspension. Cell uptake, distribution, and temporal expression of rAd were examined using A549 cells, a murine model using luciferase bioluminescence, and histological analyses. Relative to saline, a 4X increase in transduction efficiency was observed in A549 cells exposed to PFC-rAd for 2–4 h. rAd transgene expression was improved in alveolar epithelial cells, and the level and distribution of luciferase expression when delivered in PFC-rAd suspensions consistently peaked at 24 h. These results demonstrate that PFC-rAd suspensions improve distribution and enhance rAd-mediated gene expression which has important implications in improving lung function by gene therapy

    Pseudomonas aeruginosa Induces Localized Immunosuppression during Pneumonia▿ †

    No full text
    Hospital-acquired bacterial pneumonia is a common and serious complication of modern medical care. Many aspects of such infections remain unclear, including the mechanisms by which invading pathogens resist clearance by the innate immune response and the tendency of the infections to be polymicrobial. Here, we used a mouse model of infection to show that Pseudomonas aeruginosa, a leading cause of hospital-acquired pneumonia, interferes with the ability of recruited phagocytic cells to eradicate bacteria from the lung. Early in infection, phagocytic cells, predominantly neutrophils, are recruited to the lungs but are incapacitated when they enter the airways by the P. aeruginosa toxin ExoU. The resulting paucity of functioning phagocytes allows P. aeruginosa to persist within the lungs and results in local immunosuppression that facilitates superinfection with less-pathogenic bacteria. Together, our results provide explanations for previous reports linking ExoU-secreting P. aeruginosa with more severe pulmonary infections and for the tendency of hospital-acquired pneumonia to be polymicrobial
    corecore