722 research outputs found

    Nonequilibrium Green's Function Approach to Phonon Transport in Defective Carbon Nanotubes

    Full text link
    We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales defects, since the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, thermal conductance is critically affected by defect scattering since incident phonons are scattered by localized phonons around the defects. We find a remarkable change from quantum to classical features for the thermal transport through defective CNTs with increasing temperature.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Electronic Transport in Fullerene C20 Bridge Assisted by Molecular Vibrations

    Full text link
    The effect of molecular vibrations on electronic transport is investigated with the smallest fullerene C20 bridge, utilizing the Keldysh nonequilibrium Green's function techniques combined with the tight-binding molecular-dynamics method. Large discontinuous steps appear in the differential conductance when the applied bias-voltage matches particular vibrational energies. The magnitude of the step is found to vary considerably with the vibrational mode and to depend on the local electronic states besides the strength of electron-vibration coupling. On the basis of this finding, a novel way to control the molecular motion by adjusting the gate voltage is proposed.Comment: 9 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Neutron Diffraction Study of FeSn

    Get PDF
    A neutron diffraction study on the powdered sample of FeSn has been made in order to determine the magnetic structure of this compound. The magnetic unit cell is twice as large as the chemical cell, being doubled along the c-axis. The moments of iron atoms are ferromagnetically coupled within a c-plane, while they are coupled antiferromagnetically to those on the adjacent c-planes. The moments lie in the c-plane. The atomic magnetic moment of Fe is obtained to be 1.5_5±0.1μ_B at liquid nitrogen temperature

    Second-order nonadiabatic couplings from time-dependent density functional theory: Evaluation in the immediate vicinity of Jahn-Teller/Renner-Teller intersections

    Full text link
    For a rigorous quantum simulation of nonadiabatic dynamics of electrons and nuclei, knowledge of not only first-order but also second-order nonadiabatic couplings (NAC), is required. Here we propose a method to efficiently calculate second-order NAC from time-dependent density functional theory (TDDFT), on the basis of the Casida ansatz adapted for the computation of first-order NAC, which has been justified in our previous work and can be shown to be valid for calculating second-order NAC between ground state and singly excited states within the Tamm-Dancoff approximation. Test calculations of second-order NAC in the immediate vicinity of Jahn-Teller and Renner-Teller intersections show that calculation results from TDDFT, combined with modified linear response theory, agree well with the prediction from the Jahn-Teller / Renner-Teller models. Contrary to the diverging behavior of first-order NAC near all types of intersection points, the Cartesian components of second-order NAC are shown to be negligibly small near Renner-Teller glancing intersections, while they are significantly large near the Jahn-Teller conical intersections. Nevertheless, the components of second-order NAC can cancel each other to a large extent in Jahn-Teller systems, indicating the background of neglecting second-order NAC in practical dynamics simulations. On the other hand, it is shown that such a cancellation becomes less effective in an elliptic Jahn-Teller system and thus the role of second-order NAC needs to be evaluated in the rigorous framework. Our study shows that TDDFT is promising to provide accurate data of NAC for full quantum mechanical simulation of nonadiabatic processes.Comment: 27 pages, 10 figure

    Time-Dependent Multi-Component Density Functional Theory for Coupled Electron-Positron Dynamics

    Full text link
    Electron-positron interactions have been utilized in various fields of science. Here we develop time-dependent multi-component density functional theory to study the coupled electron-positron dynamics from first principles. We prove that there are coupled time-dependent single-particle equations that can provide the electron and positron density dynamics, and derive the formally exact expression for their effective potentials. Introducing the adiabatic local density approximation to time dependent electron-positron correlation, we apply the theory to the dynamics of a positronic lithium hydride molecule under a laser field. We demonstrate the significance of electron-positron dynamical correlation by revealing the complex positron detachment mechanism and the suppression of electronic resonant excitation by the screening effect of the positron.Comment: 6 pages, 3 figure
    corecore