35 research outputs found
Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether
[Background] Recent studies of lipid extraction from microalgae have focused primarily on dewatered or dried samples, and the processes are simple with high lipid yield. Yet, the dewatering with drying step is energy intensive, which makes the energy input during the lipid production more than energy output from obtained lipid. Thus, exploring an extraction technique for just a thickened sample without the dewatering, drying and auxiliary operation (such as cell disruption) is very significant. Whereas lipid extraction from the thickened microalgae is complicated by the high water content involved, and traditional solvent, hence, cannot work well. Dimethyl ether (DME), a green solvent, featuring a high affinity for both water and organic compounds with an ability to penetrate the cell walls has the potential to achieve this goal. [Results] This study investigated an energy-saving method for lipid extraction using DME as the solvent with an entrainer solution (ethanol and acetone) for flocculation-thickened microalgae. Extraction efficiency was evaluated in terms of extraction time, DME dosage, entrainer dosage, and ethanol:acetone ratio. Optimal extraction occurred after 30 min using 4.2 mL DME per 1 mL microalgae, with an entrainer dosage of 8% at 1:2 ethanol:acetone. Raw lipid yields and its lipid component (represented by fatty acid methyl ester) contents were compared against those of common extraction methods (Bligh and Dryer, and Soxhlet). Thermal gravimetry/differential thermal analysis, Fourier-transform infrared spectroscopy, and C/H/N elemental analyses were used to examine differences in lipids extracted using each of the evaluated methods. Considering influence of trace metals on biodiesel utilization, inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy analyses were used to quantify trace metals in the extracted raw lipids, which revealed relatively high concentrations of Mg, Na, K, and Fe. [Conclusions] Our DME-based method recovered 26.4% of total raw lipids and 54.4% of total fatty acid methyl esters at first extraction with remnants being recovered by a 2nd extraction. In additional, the DME-based approach was more economical than other methods, because it enabled simultaneous dewatering with lipid extraction and no cell disruption was required. The trace metals of raw lipids indicated a purification demand in subsequent refining process
Microalgae preparation and lipid extraction by subcritical dimethyl ether
Biodiesel produced from microalgae is a potential alternative due to the high growth rate of microalgae, the possibility of using nonarable land, and high lipid accumulation rate. Microalgae cultivation, cell harvesting and disruption are the important steps before lipid extraction for the biodiesel. In the co-submission article, the details of the whole process cannot be clearly explained. In this regard, we present the details of methods on parameter of photo-bioreactor for cultivating microalgae, flocculation tests to determine optimal flocculant dosage in harvesting, parameter of Dimethyl ether (DME) subcritical extraction device and full-factorial design for investigating the influence of extraction time, initial water content and DME dosage on the extraction performance. It will allow researchers to reproduce these experiments. • The method shows a cell disruption assisted lipid extraction by subcritical dimethyl ether. • Model is built from full-factorial design to investigate multi-factor influence. • Differential scanning calorimetry can be applicable to measure free water content
Effect of pH on the performance of an acidic biotrickling filter for simultaneous removal of H₂S and siloxane from biogas
Acidic biotrickling filters (BTF) can be used for simultaneous removal of hydrogen sulfide (H₂S) and siloxane from biogas. In this study, the performance of a BTF under different acidic pH conditions was investigated. The removal profile of H₂S showed that 90% of H₂S removal was achieved during the first 0.4 m of BTF height with down-flow biogas. Decamethylcyclopentasiloxane (D5) removal decreased from 34.5% to 15.6% when the pH increased from 0.88 to 3.98. Furthermore, the high partition coefficient of D5 obtained in under higher pH condition was attributed to the higher total ionic strength resulting from the addition of sodium hydroxide solution and mineral medium. The linear increase in D5 removal with the mass transfer coefficient (kL) indicated that the acidic recycling liquid accelerated the mass transfer of D5 in the BTF. Therefore, the lower partition coefficient and higher kL under acidic pH conditions lead to the efficient removal of D5. However, the highly acidic pH 0.9 blocked mass transfer of H₂S and O2 gases to the recycling liquid. Low sulfur oxidation activity and low Acidithiobacillus sp. content also deteriorated the biodegradation of H₂S. Operating the BTF at pH 1.2 was optimal for simultaneously removing H₂S and siloxane
Mercury emission profile for the torrefaction of sewage sludge at a full-scale plant and application of polymer sorbent
We evaluated mercury (Hg) behavior in a full-scale sewage sludge torrefaction plant with a capacity of 150 wet tons/day, which operates under a nitrogen atmosphere at a temperature range of 250–350 °C. Thermodynamic calculations and monitoring results show that elemental Hg (Hg⁰) was the dominant species in both the pyrolysis gas during the torrefaction stage and in the flue gas from downstream air pollution control devices. A wet scrubber (WS) effectively removed oxidized Hg from the flue gas and moved Hg to wastewater, and an electrostatic precipitator (ESP) removed significant particulate-bound Hg but showed a limited capacity for overall Hg removal. Hg bound to total suspended solids had a much higher concentration than that of dissolved Hg in wastewater. Total suspended solid removal from wastewater is therefore recommended to reduce Hg discharge. Existing air pollution control devices, which consist of a cyclone, WS, and ESP, are not sufficient for Hg removal due to the poor Hg⁰ removal performance of the WS and ESP; a further Hg0 removal unit is necessary. A commercial packed tower with sorbent polymer catalyst composite material was effective in removing Hg (83.3%) during sludge torrefaction
Emission of Particulate Matter 2.5 (PM2.5) from Sewage Sludge Incinerators in Japan
Selected Papers from the 4th European Conference on Sludge Management (ECSM 2014)Because fine particulate matter ≤2.5 µm in diameter (PM2.5) causes health problems, PM2.5 emissions are of concern. However, little research on stationary sources has been conducted. To determine the concentration and filtration behavior of PM2.5, dust was collected from five fluid-bed sewage sludge incinerators (SSIs) sorted by particle size using cascade impactors. The average PM2.5 concentration was 0.00014–4.8 mg/Nm3. The total estimated amount of PM2.5 emissions from the SSIs for all plants in Japan was 0.96–8.9 tons/year. Since the SSIs with dry Electrostatic Precipitators (EP) contributed 75–99% of the total emissions, replacing dry EPs with bag filters would significantly reduce the PM2.5 emissions from SSI
In-situ biogas upgrading with H-2 addition in an anaerobic membrane bioreactor (AnMBR) digesting waste activated sludge
Biological in-situ biogas upgrading is a promising approach for sustainable energy-powered technologies. This method increases the CH4 content in biogas via hydrogenotrophic methanogenesis with an external H-2 supply. In this study, an anaerobic membrane bioreactor (AnMBR) was employed for in-situ biogas upgrading. The AnMBR was operated in semi-batch mode using waste activated sludge as the substrate. Pulsed H-2 addition into the reactor and biogas recirculation effectively increased the CH4 content in the biogas. The addition of 4 equivalents of H-2 relative to CO2 did not lead to appreciable biogas upgrading, although the acetate concentration increased significantly. When 11 equivalents of H-2 were introduced, the biogas was successfully upgraded, and the CH4 content increased to 92%. The CH4 yield and CH4 production rate were 0.31 L/g-VSinput and 0.086 L/L/d, respectively. In this phase of the process, H-2 addition increased the acetate concentration and the pH because of CO2 depletion. Compared with a continuously-stirred tank reactor, the AnMBR system attained higher CH4 content, even without the addition of H-2. The longer solid retention time (100 d) in the AnMBR led to greater degradation of volatile solids. Severe membrane fouling was not observed, and the transmembrane pressure remained stable under 10 kPa for 117 d of continuous filtration without cleaning of the membrane. The AnMBR could be a promising reactor configuration to achieve in-situ biogas upgrading during sludge digestion
Methods of Determining Lead Speciation in Fly Ash by X-ray Absorption Fine-Structure Spectroscopy and a Sequential Extraction Procedure
Understanding the chemical state of lead in fly ash generated from a waste thermal treatment is important, since the toxicity and solubility of the element depends on its chemical state. This study identified three potential methods for obtaining quantitative information regarding the chemical state of lead in fly ash: X-ray absorption near edge structure (XANES) analysis, extended X-ray absorption fine structure (EXAFS) analysis, and the sequential extraction procedure. The result of this procedure was strongly affected by the pH and sample matrix, and did not necessarily accurately reflect the chemical state. It was difficult to quantitatively examine the chemical species using only EXAFS. However, an XANES fitting enabled direct quantification of the chemical species. An XANES analysis showed that PbSiO3, PbCl2, or Pb2O(OH)2 was the predominant chemical species in fly ash. We concluded that multiple analyses should be compared multilaterally to improve the accuracy of the final analysis
Chlorides behavior in raw fly ash washing experiments.
Chloride in fly ash from municipal solid waste incinerators (MSWIs) is one of the obstructive substances in recycling fly ash as building materials. As a result, we have to understand the behavior of chlorides in recycling process, such as washing. In this study, we used X-ray absorption near edge structure (XANES) and X-ray diffraction (XRD) to study the chloride behavior in washed residue of raw fly ash (RFA). We found that a combination of XRD and XANES, which is to use XRD to identify the situation of some compounds first and then process XANES data, was an effective way to explain the chlorides behavior in washing process. Approximately 15% of the chlorine in RFA was in the form of NaCl, 10% was in the form of KCl, 51% was CaCl(2), and the remainder was in the form of Friedel's salt. In washing experiments not only the mole percentage but also the amount of soluble chlorides including NaCl, KCl and CaCl(2) decreases quickly with the increase of liquid to solid (L/S) ratio or washing frequency. However, those of insoluble chlorides decrease slower. Moreover, Friedel's salt and its related compound (11CaO.7Al(2)O(3).CaCl(2)) were reliable standards for the insoluble chlorides in RFA, which are strongly related to CaCl(2). Washing of RFA promoted the release of insoluble chlorides, most of which were in the form of CaCl(2)