12 research outputs found

    Introduction and scientific justification of data transportability for confined field testing for the ERA of GM plants

    Get PDF
    The concept of Data Transportability (DT) of Confined Field Testing (CFT) to support the Environmental Risk Assessment (ERA) of Genetically Modified (GM) plants was first introduced in the literature by Garcia-Alonso et al., in 2014. Since then, DT has been discussed in many countries and regions as a concept to prevent duplication of regulatory studies without compromising quality of the ERA. However, despite its usefulness and scientific justification, DT is not well adopted at this time and many regulatory agencies around the world require additional in-country CFT be conducted before approving GM plants. Based on the current circumstances, the authors organized a parallel session entitled “Introduction and Scientific Justification of DT for CFT for the ERA of GM plants” at 16th ISBR (the International Society for Biosafety Research). This session mainly consisted of the following three parts. The first two speakers, Andrew Roberts and Abigail Simmons provided an overview of DT and examples of conditions for the transportability of field data/conclusions advocated in the peer-reviewed scientific journals. Next, the current status of DT adoption in some countries/regions such as Japan and Africa, and a theoretical case study for Argentina were introduced by Kazuyuki Hiratsuka, Douglas Miano, and Facundo Vesprini, respectively. Lastly, a risk hypothesis-based approach for DT which was developed in advance by the five speakers of this parallel session, was introduced. During the discussion, there was a common understanding that transition to the risk hypothesis-based approach for DT was scientifically appropriate, considering the accumulated evidences that several countries have conducted confirmatory local CFT for more than 20 years but they have not detected any differences related to the ERA assessment endpoints in GM crops. The risk hypothesis-based approach for DT introduced here is expected to play an important role in discussions on the implementation of DT in various parts of the world in the future

    Studies on regulated expression of plant defense genes

    No full text

    Evaluation of the Use of the Tobacco PR-1a

    No full text

    Autonomic and behavioural thermoregulation in starved rats

    No full text
    We investigated the mechanism of starvation-induced hypothermia in rats.Threshold core temperatures (Tcor) for tail skin vasodilatation and cold-induced thermogenesis were determined after a 3 day starvation using a chronically implanted intravenous thermode. Food deprivation significantly lowered the threshold Tcor for heat production, but did not affect the heat loss threshold.Thermogenic response to a fall in Tcor below its threshold was enhanced by starvation.Preferred ambient temperatures (Tpref) and Tcor were measured before and during a 3 day starvation in a thermal gradient. The 3 day starvation significantly lowered Tcor only in the light phase of the day. The level of hypothermia was the same throughout the fasting period, while Tpref gradually increased during the 3 days of starvation.When rats were starved at a constant ambient temperature of 25°C (no thermal gradient), their Tcor levels were comparable with those of the rats kept in the thermal gradient.The results suggest that, in rats, hypothermia caused by starvation was not due to a decrement in thermogenic capability, but was due to a decrease in the threshold for the activation of thermogenesis
    corecore