107 research outputs found

    Strand movements in cable-in-conduit conductors

    Get PDF
    The compression tests with dummy bundles have been performed to investigate the strand movements in cable-in-conduit conductors. The bundle consists of 20 mm long vinyl tubes. The cross section of the bundle is a round-cornered rectangle of 10 mm × 20 mm. Body force was applied in the transverse direction by means of a pressurized argon gas flow at room temperature. Pressure gradient in the bundle produced body force acting on each strand. The strand movements were observed with a CCD camera. Surface pressure was also applied with a piston, and a comparison has been made between two methods. Influence of a sub-bundle structure on the movements is also investigated

    Cryogenic Stability of LTS/HTS Hybrid Conductors

    Get PDF
    Hybrid-type superconductors are proposed by utilizing a bundle of high-temperature superconducting (HTS) tapes as a stabilizer of low-temperature superconducting (LTS) cables in order to extend the basic research on the cryogenic stability of solid composite-type superconductors and to explore its potential. Since the effective resistivity of HTS is significantly lower than that of pure metals of equivalent cross-sectional area, a bundle of HTS tapes may work as a good stabilizer to achieve high current density. Short sample experiments have been carried out by modifying the aluminum-stabilized superconductor used for the LHD helical coils and the cryogenic stability was examined

    Effects of spatially limited external magnetic fields on short sample tests of large-scale superconductors

    Get PDF
    For short sample tests of large-scale superconductor coil conductors, it is difficult to get sufficient spatial uniformity using external magnetic fields because of the size limitations of test facilities. The effects of spatially limited external magnetic fields on short sample tests are discussed by comparing the test results for narrow and broad external magnetic fields. The authors tested short samples of pool-cooled 10 kA class superconductors using two kinds of split coils which are different in bore size. The measured recovery currents for the narrow external field are more than twice those for the broad field. It shows that the insufficient spatial distribution of the external field biases the stability measurements of superconductor

    Hysteresis Loss in Poloidal Coils of the Large Helical Device

    Get PDF
    Hysteresis loss in poloidal coils of the Large Helical Device (LHD) has been measured during single-pulse operation. The superconductors of the coils are Nb-Ti cable-in-conduit conductors (CICC) cooled by forced-flow supercritical helium. The loss was measured by monitoring the enthalpy increase of the helium coolant between the inlet and outlet. Although the hysteresis loss was extracted by extrapolating several data sets from pulse excitations with different sweep rates, the extrapolated loss was much larger than the estimation using the magnetic hysteresis of the conductor. The anomalous increase in the loss is likely due to inter-strand coupling loss with long time constants from the order of 10 to 1000 s. The calculations show that the additional coupling loss behaves like a hysteresis loss

    Microstructure observations on butt joint composed of Nb3Sn CIC conductors

    Get PDF
    To precisely evaluate a butt joint technology for the JT-60SA CS coils, microstructure observations on the butt joint composed of Nb3Sn CIC conductors were conducted using a FE-SEM. As a sample for the observations, the butt joint sample utilized in the joint resistance measurement was used. During the sample fabrication, the butt joint sample was heated up to about 920 K from room temperature for diffusion bonding after heat treatment for Nb3Sn production. Then, the sample was subjected to the cycles of electromagnetic force in the joint measurement.The observation results indicated that Nb3Sn strands and a copper sheet were butted properly at the interface of the butt joint. In addition, there were hairline cracks in the Nb3Sn layers of the strands near the interface. To investigate a cause of the crack initiation, the stresses generated in the butt joint under same conditions were analyzed using a simple model. As a result, the cracks would occur with an axial compressive stress generated by the butt joint fabrication

    Operational status of the superconducting system for LHD

    Get PDF
    Large Helical Device (LHD) is a heliotron-type experimental fusion device which has the capability of confining current-less and steady-state plasma. The primary feature on the engineering aspect of LHD is using superconducting (SC) coils for magnetic confinement: two pool boiling helical coils (H1, H2) and three pairs of forced-flow poloidal coils (IV, IS, OV). These coils are connected to the power supplies by SC bus-lines. Five plasma experimental campaigns have been performed successfully in four years from 1998. The fifth operation cycle started in August 2001 and finished in March 2002. We have succeeded to obtain high plasma parameters such as 10 keV of electron temperature, 5 keV of ion temperature and beta value of 3.2%. The operational histories of the SC coils, the SC bus-lines and the cryogenic system have been demonstrating high reliability of the large scale SC system. The operational status and the results of device engineering experiments are summarized

    Multiscale Stress Analysis and 3D Fitting Structure of Superconducting Coils for the Helical Fusion Reactor

    Get PDF
    Conceptual design studies for the Large-Helical-Device-type helical reactor, i.e., FFHR-d1, are being conducted in the National Institute for Fusion Science. Three different cooling schemes and conductor types have been proposed for the superconducting magnet system. A multiscale structural analysis is used to assess the mechanical characteristics of the magnet structure, taking into account the types of cooling schemes and superconductors. Multiscale analysis evaluates both the stress distribution in the coil support structure and local stress in the constituents of the superconductors without rebuilding a finite-element model of the support structure. Concerning a segmented fabrication of the helical coils using a high-temperature superconductor, the feasibility of segment installation is confirmed using a three-dimensional printing model, which identifies the maximum segment length and the necessary gap in the coil casing to install a segment

    Lessons learned from twenty-year operation of the Large Helical Device poloidal coils made from cable-in-conduit conductors

    Get PDF
    The Large Helical Device (LHD) superconducting magnet system consists of two pairs of helical coils and three pairs of poloidal coils. The poloidal coils use cable-in-conduit (CIC) conductors, which have now been adopted in many fusion devices, with forced cooling by supercritical helium. The poloidal coils were first energized with the helical coils on March 27, 1998. Since that time, the coils have experienced 54,600 h of steady cooling, 10,600 h of excitation operation, and nineteen thermal cycles for twenty years. During this period, no superconducting-to-normal transition of the conductors has been observed. The stable operation of the poloidal coils demonstrates that a CIC conductor is suited to large-scale superconducting magnets. The AC loss has remained constant, even though a slight decrease was observed in the early phase of operation. The hydraulic characteristics have been maintained without obstruction over the entire period of steady cooling. The experience gained from twenty years of operation has also provided lessons regarding malfunctions of peripheral equipment

    Stability test results on the aluminum stabilized superconductor for the helical coils of LHD

    Get PDF
    Stability tests have been carried out on short samples of the aluminum/copper stabilized composite-type superconductors developed and used for the pool-cooled helical coils of the Large Helical Device. The waveform of the longitudinal voltage initiated by resistive heaters shows a short-time rise before reaching a final value, which seems to correspond to the diffusion process of transport current into the pure aluminum stabilizer. The propagation velocity has a finite value even for the transport current being lower than the recovery current, and it differs depending on the direction with respect to the transport current
    corecore