70 research outputs found

    Development of Novel Synthetic Amine Absorbents for CO2 Capture

    Get PDF
    AbstractIn the present paper, we investigated five synthetic amine based absorbents, including three formulated solvents. Aqueous solutions of the amines (mass fraction; 30% for single amine and >30% for blended solvents) were used to evaluate the performance for CO2 capture. Gas scrubbing, vapor-liquid equilibrium (VLE), and reaction calorimetry experiments were conducted in the laboratory to obtain the absorption rate, the amount of CO2 absorbed, cyclic CO2 capacity, and heat of reaction for each absorbent. The results of these absorbents were compared with the conventional absorbent monoethanolamine (MEA). Three high performing synthetic absorbents (IPAE, IPAP and IBAE) were found, and these had lower heats of reaction, higher cyclic capacities, and comparable absorption rates compared with MEA. All formulated absorbents showed excellent cyclic CO2 capacity and keeping moderately good absorption rate and lower heats of absorption. Some blended solvents were already demonstrated with real blast furnace gas at pilot test plants with capacities of 1 ton-CO2/day and 30 ton-CO2/day and showed promising results in terms of reducing absorbent regeneration energy

    Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    Get PDF
    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

    Successful management of placenta percreta by cesarean hysterectomy with transverse uterine fundal incision

    Get PDF
    Placenta accreta presents one of the highest risks to pregnancy, and its more severe variant, placenta percreta, is particularly risky. The incidence of both conditions is increasing. Placenta percreta requires a cesarean hysterectomy for management, but the challenges associated with this surgery often result in severe obstetric hemorrhaging and high rates of maternal morbidity. Several recent obstetric studies have reported on the usefulness of the transverse uterine fundal incision for the management of placenta accreta and its variants. However, these reports included only a few cases of placenta percreta. Here we present a case of placenta percreta covering the anterior uterine wall that was successfully managed using a transverse fundal incision, which avoided incising the placenta at delivery and thus reduced maternal blood loss. After delivery, the patient underwent a total abdominal hysterectomy without the need for a blood transfusion. We conclude that a transverse uterine fundal incision can be very useful for the management of placenta percreta of the anterior uterine wall

    Gravity field determination around Syowa station by combining GOCE and in-situ gravity data

    Get PDF
    第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月29日(木) 国立極地研究所 3階ラウン

    NARP-related alterations in the excitatory and inhibitory circuitry of socially isolated mice: developmental insights and implications for autism spectrum disorder

    Get PDF
    BackgroundSocial isolation during critical periods of development is associated with alterations in behavior and neuronal circuitry. This study aimed to investigate the immediate and developmental effects of social isolation on firing properties, neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and the biological relevance of NARP expression in autism spectrum disorder (ASD).MethodsMice were subjected to social isolation during postnatal days 21–35 (P21–P35) and were compared with group-housed control mice. Firing properties in the PFC pyramidal neurons were altered in P35 socially isolated mice, which might be associated with alterations in NARP and PV expression.ResultsIn adulthood, mice that underwent juvenile social isolation exhibited difficulty distinguishing between novel and familiar mice during a social memory task, while maintaining similar levels of social interaction as the control mice. Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines derived from adolescent humans with ASD as compared to typically developing (TD) humans was found.ConclusionOur study highlights the role of electrophysiological properties, as well as NARP and PV expression in the PFC in mediating the developmental consequences of social isolation on behavior

    Hibikino-Musashi@Home 2023 Team Description Paper

    Full text link
    This paper describes an overview of the techniques of Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team has developed a dataset generator for the training of a robot vision system and an open-source development environment running on a human support robot simulator. The robot system comprises self-developed libraries including those for motion synthesis and open-source software works on the robot operating system. The team aims to realize a home service robot that assists humans in a home, and continuously attend the competition to evaluate the developed system. The brain-inspired artificial intelligence system is also proposed for service robots which are expected to work in a real home environment

    Right ventricular dysfunction in patients with Brugada-like electrocardiography: a two dimensional strain imaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sodium channel blockers augment ST-segment elevation in the right precordial leads in patients undergoing Brugada-type electrocardiography (ECG). However, their effect on echocardiographic features is not known. We address this by assessing global and regional ventricular function using conventional Doppler and two- dimensional (2D) speckle tracking techniques.</p> <p>Methods</p> <p>Thirty-one patients with Brugada-type ECG were studied. A pure sodium channel blocker, pilsicainide, was used to provoke an ECG response. The percentage longitudinal systolic myocardial strain at the base of both the right ventricular (RV) free wall and the interventricular septum wall was measured using 2D speckle tracking. Left ventricular (LV) and RV myocardial performance (TEI) indices were also measured.</p> <p>Results</p> <p>The pilsicainide challenge provoked a positive ECG response in 13 patients (inducible group). In the inducible group, longitudinal strain was significantly reduced only at the RV (-27.3 ± 5.4% vs -22.1 ± 3.6%, <it>P </it>< 0.01), and both RV and LV TEI indices increased (RV: 0.19 ± 0.09 vs 0.27 ± 0.11, <it>P </it>< 0.05; LV: 0.30 ± 0.10 vs 0.45 ± 0.10, <it>P </it>< 0.01) after pilsicainide administration.</p> <p>Conclusions</p> <p>Temporal and spatial analysis using the TEI index and 2D strain imaging revealed the deterioration of global ventricular function associated with conduction disturbance and RV regional function in patients with Brugada-type ECG and coved type ST elevation due to administration of a sodium channel blocker.</p

    Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor β (TGFβ) receptor signaling is closely associated with the invasion ability of gastric cancer cells. Although Smad signal is a critical integrator of TGFβ receptor signaling transduction systems, not much is known about the role of Smad2 expression in gastric carcinoma. The aim of the current study is to clarify the role of phosphorylated Smad2 (p-Smad2) in gastric adenocarcinomas at advanced stages.</p> <p>Methods</p> <p>Immunohistochemical staining with anti-p-Smad2 was performed on paraffin-embedded specimens from 135 patients with advanced gastric adenocarcinomas. We also evaluated the relationship between the expression levels of p-Smad2 and clinicopathologic characteristics of patients with gastric adenocarcinomas.</p> <p>Results</p> <p>The p-Smad2 expression level was high in 63 (47%) of 135 gastric carcinomas. The p-Smad2 expression level was significantly higher in diffuse type carcinoma (p = 0.007), tumours with peritoneal metastasis (p = 0.017), and tumours with lymph node metastasis (p = 0.047). The prognosis for p-Smad2-high patients was significantly (p = 0.035, log-rank) poorer than that of p-Smad2-low patients, while a multivariate analysis revealed that p-Smad2 expression was not an independence prognostic factor.</p> <p>Conclusion</p> <p>The expression of p-Smad2 is associated with malignant phenotype and poor prognosis in patients with advanced gastric carcinoma.</p
    corecore