483 research outputs found

    Fast-forward scaling in a finite-dimensional Hilbert space

    Full text link
    Time evolution of quantum systems is accelerated by the fast-forward scaling. We reformulate the method to study systems in a finite-dimensional Hilbert space. For several simple systems, we explicitly construct the acceleration potential. We also use our formulation to accelerate the adiabatic dynamics. Applying the method to the transitionless quantum driving, we find that the fast-forward potential can be understood as a counterdiabatic term.Comment: 7 pages, 5 figures, revise

    Unitary deformations of counterdiabatic driving

    Full text link
    We study a deformation of the counterdiabatic-driving Hamiltonian as a systematic strategy for an adiabatic control of quantum states. Using a unitary transformation, we design a convenient form of the driver Hamiltonian. We apply the method to a particle in a confining potential and discrete systems to find explicit forms of the Hamiltonian and discuss the general properties. The method is derived by using the quantum brachistochrone equation, which shows the existence of a nontrivial dynamical invariant in the deformed system.Comment: 10 pages, 3 figures; revise
    corecore