32 research outputs found

    A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines

    Get PDF
    Influenza vaccines of H7N9 subtype are consistently less immunogenic in humans than vaccines developed for other subtypes. Although prior immunoinformatic analysis identified T-cell epitopes in H7 hemagglutinin (HA) which potentially enhance regulatory T cell response due to conservation with the human genome, the links between the T-cell epitopes and low immunogenicity of H7 HA remains unknown due to the lack of animal models reproducing the response observed in humans. Here, we utilized a humanized mouse model to recapitulate the low immunogenicity of H7 HA. Our analysis demonstrated that modification of a single H7 epitope by changing 3 amino acids so that it is homologous with a known H3 immunogenic epitope sequence significantly improved the immunogenicity of the H7 HA in the humanized mouse model, leading to a greater than 4-fold increase in HA-binding IgG responses. Thus, we provide experimental evidence for the important contribution of this H7-specific T cell epitope in determining the immunogenicity of an influenza vaccine. Furthermore, this study delineates strategies that can be used for screening and selecting vaccine strains using immunoinformatics tools and a humanized mouse model

    Changing trends in prognostic factors for patients with multiple myeloma after autologous stem cell transplantation during the immunomodulator drug/proteasome inhibitor era

    Get PDF
    We evaluated the clinical significance of prognostic factors including the International Staging System (ISS) and modified European Group for Blood and Marrow Transplantation response criteria in 1650 Japanese patients with multiple myeloma (MM) who underwent upfront single autologous stem cell transplantation (ASCT). We categorized patients into two treatment cohorts: pre-novel agent era (1995-2006) and novel agent era (2008-2011). The combined percentage of pre-ASCT complete response and very good partial response cases (463 of 988, 47%) significantly increased during the novel agent era compared with the pre-novel agent era (164 of 527, 31%; P < 0.0001). The 2-year overall survival (OS) rate of 87% during the novel agent era was a significant improvement relative to that of 82% during the pre-novel agent era (P = 0.019). Although significant differences in OS were found among ISS stages during the pre-novel agent era, no significant difference was observed between ISS I and II (P = 0.107) during the novel agent era. The factors independently associated with a superior OS were female gender (P = 0.002), a good performance status (P = 0.024), lower ISS (P < 0.001), pre-ASCT response at least partial response (P < 0.001) and ASCT during the novel agent era (P = 0.017). These results indicate that the response rate and OS were significantly improved, and the ISS could not clearly stratify the prognoses of Japanese patients with MM who underwent upfront single ASCT during the novel agent era. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association

    Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes

    Get PDF
    Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral

    Homozygosity Mapping on Homozygosity Haplotype Analysis to Detect Recessive Disease-Causing Genes from a Small Number of Unrelated, Outbred Patients

    Get PDF
    Genes involved in disease that are not common are often difficult to identify; a method that pinpoints them from a small number of unrelated patients will be of great help. In order to establish such a method that detects recessive genes identical-by-descent, we modified homozygosity mapping (HM) so that it is constructed on the basis of homozygosity haplotype (HM on HH) analysis. An analysis using 6 unrelated patients with Siiyama-type α1-antitrypsin deficiency, a disease caused by a founder gene, the correct gene locus was pinpointed from data of any 2 patients (length: 1.2–21.8 centimorgans, median: 1.6 centimorgans). For a test population in which these 6 patients and 54 healthy subjects were scrambled, the approach accurately identified these 6 patients and pinpointed the locus to a 1.4-centimorgan fragment. Analyses using synthetic data revealed that the analysis works well for IBD fragment derived from a most recent common ancestor (MRCA) who existed less than 60 generations ago. The analysis is unsuitable for the genes with a frequency in general population more than 0.1. Thus, HM on HH analysis is a powerful technique, applicable to a small number of patients not known to be related, and will accelerate the identification of disease-causing genes for recessive conditions

    Effect of Substratum Structural Complexity of Coral Seedlings on the Settlement and Post-Settlement Survivorship of Coral Settlers

    No full text
    The substratum structure is critical for facilitating settlement and increasing the survivorship of coral settlers. However, knowledge about its structural complexity is largely lacking. In this study, we examined the effect of complexity on the settlement and post-settlement survivorship of coral settlers using four types of structures: groove, using a CSD (Coral Settlement Device, 4.5 cm &phi; &times; 2.5 cm H, top-shaped ceramic); flat, using a CP (Ceramic Plate, 29.5 cm L &times; 3.1 cm W &times; 0.9 cm H, unglazed ceramic plate); linear, using a CN (Coral Net, mesh size 19 mm, biodegradable plastic net); and wrinkle, using a SS (Scallop Shell, 11.0 cm in shell length). The complexity was obtained from the ratio of the surface area to the vertically projected area of the substratum. The substratum sets were installed in the coral reef around the Ryukyu Islands every May from 2012 to 2014. After about 2 or 6 months of spawning, a certain number of substratum types were sampled, and the number of coral spats that settled on them was counted by taxa classified into Acropora, Pocilloporidae, Millepora, and Others. The larval settlement rate in the first set of samples and the survivorship of coral spats in the second set of samples were estimated. The mean settlement rate was, in order, the CSD; SS; CN; and CP, and the mean survivorship was, in order, the CSD; CP; SS; and CN, over three years. A positive correlation was found between the structural complexity, mean settlement rate, and mean survivorship. Our results show that the structural complexity of coral seedlings affects the settlement of coral larvae and the survivorship of coral spats

    Patient-derived spheroids and patient-derived organoids simulate evolutions of lung cancer

    No full text
    Cancer cells harbor many genetic mutations and gene expression profiles different from normal cells. Patient-derived cancer cells (PDCC) are preferred materials in cancer study. We established patient-derived spheroids (PDSs) and patient-derived organoids (PDOs) from PDCCs isolated from the malignant pleural effusion in 8 patients. The morphologies suggested that PDSs may be a model of local cancer extensions, while PDOs may be a model of distant cancer metastases. The gene expression profiles differed between PDSs and PDOs: Gene sets related to inflammatory responses and EMT were antithetically regulated in PDSs or in PDOs. PDSs demonstrated an attenuation of the pathways that contribute to the enhancement of transforming growth factor beta (TGF-β) induced epithelial mesenchymal transition (EMT), while PDOs demonstrated an attenuation of it. Taken together, PDSs and PDOs have differences in both the interaction to the immune systems and to the stroma. PDSs and PDOs will provide a model system that enable intimate investigation of the behavior of cancer cells in the body
    corecore