4 research outputs found

    Regional gray matter-dedicated SUVR with 3D-MRI detects positive amyloid deposits in equivocal amyloid PET images.

    No full text
    PURPOSE It is usually easy to judge whether amyloid PET images should be interpreted as positive or negative for amyloid deposits by visual inspection or quantitative measurement standard uptake value ratio (SUVR), but the findings are equivocal in some cases. As conventional mean cortical SUVR (mcSUVR) measures accumulation in both gray matter (GM) and white matter, it may mis-estimate amyloid deposits. The purpose of the study was to develop a regional GM-dedicated SUVR measuring (GMSUVR) system for amyloid PET images with 3D-MRI, and evaluate its utility for detecting amyloid deposits in equivocal cases. METHODS Of 126 subjects who underwent amyloid PET with 11C-PiB and 3D-MRI, the area of amyloid-positive regions and the critical regional GMSUVR thresholds were first determined in 15 amyloid-positive and 15 amyloid-negative patients, using the automatic volumetric measurement of segmented brain images system. We then tested 36 amyloid-negative, 60 amyloid-positive, and 13 equivocal subjects with this GMSUVR system and with conventional mcSUVR. RESULTS Sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were 100%, 92%, 97%, 95%, and 100% for the GMSUVR system; and 97%, 86%, 93%, 92% and 94%, respectively, for mcSUVR. In 24 cases in which the findings were equivocal or discordant, the sensitivity, specificity, accuracy, PPV, and NPV were all 100% for the GMSUVR system; and were 90%, 33%, 83%, 90%, and 33%, respectively, for mcSUVR. CONCLUSION The regional GMSUVR measurement method was well able to discriminate between amyloid-positive and -negative subjects, even in cases where amyloid deposition was equivocal

    A genome-wide association study for allergen component sensitizations identifies allergen component–specific and allergen protein group–specific associations

    No full text
    Background: Allergic diseases are some of the most common diseases worldwide. Genome-wide association studies (GWASs) have been conducted to elucidate the genetic factors of allergic diseases. However, no GWASs for allergen component sensitization have been performed. Objective: We sought to detect genetic variants associated with differences in immune responsiveness against allergen components. Methods: The participants of the present study were recruited from the Tokyo Children’s Health, Illness, and Development study, and allergen component–specific IgE level at age 9 years was measured by means of allergen microarray immunoassays. We performed GWASs for allergen component sensitization against each allergen (single allergen component sensitization, number of allergen components analyzed, n = 31), as well as against allergen protein families (allergen protein group sensitization, number of protein groups analyzed, n = 16). Results: We performed GWAS on 564 participants of the Tokyo Children’s Health, Illness, and Development study and found associations between Amb a 1 sensitization and the immunoglobulin heavy-chain variable gene on chromosome 14 and between Phl p 1 sensitization and the HLA class II region on chromosome 6 (P < 5.0 × 10−8). A GWAS-significant association was also observed between the HLA class II region and profilin sensitization (P < 5.0 × 10−8). Conclusions: Our data provide the first demonstration of genetic risk for allergen component sensitization and show that this genetic risk is related to immune response genes including immunoglobulin heavy-chain variable gene and HLA
    corecore