45 research outputs found
Anti-inflammatory effects of hyaluronan in arthritis therapy: Not just for viscosity
Hyaluronic acid (HA) has been widely used for viscosupplementation of diseased or aged articular joints. However, recent investigations have revealed the active anti-inflammatory or chondroprotective effect of HA, suggesting its potential role in attenuation of joint damage. In particular, interactions between HA and other inflammatory mediators are attracting interest. This review summarizes several aspects of recent investigations of the anti-inflammatory effects of HA in arthritis
Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1α in articular chondrocytes: involvement of HIF-1α in the pathogenesis of osteoarthritis
Transcription factor hypoxia-inducible factor (HIF)-1 protein accumulates and activates the transcription of genes that are of fundamental importance for oxygen homeostasis – including genes involved in energy metabolism, angiogenesis, vasomotor control, apoptosis, proliferation, and matrix production – under hypoxic conditions. We speculated that HIF-1α may have an important role in chondrocyte viability as a cell survival factor during the progression of osteoarthritis (OA). The expression of HIF-1α mRNA in human OA cartilage samples was analyzed by real-time PCR. We analyzed whether or not the catabolic factors IL-1β and H(2)O(2 )induce the expression of HIF-1α in OA chondrocytes under normoxic and hypoxic conditions (O(2 )<6%). We investigated the levels of energy generation, cartilage matrix production, and apoptosis induction in HIF-1α-deficient chondrocytes under normoxic and hypoxic conditions. In articular cartilages from human OA patients, the expression of HIF-1α mRNA was higher in the degenerated regions than in the intact regions. Both IL-1β and H(2)O(2 )accelerated mRNA and protein levels of HIF-1α in cultured chondrocytes. Inhibitors for phosphatidylinositol 3-kinase and p38 kinase caused a significant decrease in catabolic-factor-induced HIF-1α expression. HIF-1α-deficient chondrocytes did not maintain energy generation and cartilage matrix production under both normoxic and hypoxic conditions. Also, HIF-1α-deficient chondrocytes showed an acceleration of catabolic stress-induced apoptosis in vitro. Our findings in human OA cartilage show that HIF-1α expression in OA cartilage is associated with the progression of articular cartilage degeneration. Catabolic-stresses, IL-1β, and oxidative stress induce the expression of HIF-1α in chondrocytes. Our results suggest an important role of stress-induced HIF-1α in the maintenance of chondrocyte viability in OA articular cartilage
Usefulness of Real-Time 4D Ultrasonography during Radiofrequency Ablation in a Case of Hepatocellular Carcinoma
We report a case of hepatocellular carcinoma (HCC) with chronic hepatitis C virus infection successfully treated with percutaneous radiofrequency ablation (RFA) under live four-dimensional (4D) echo guidance. A 65-year-old Japanese man had a HCC nodule in the liver S5 region 2.0 cm in diameter. We performed real-time 4D ultrasonography during RFA therapy with a LeVeen needle electrode. The echo guidance facilitated an accurate approach for the needle puncture. The guidance was also useful for confirming whether an adequate safety margin for the nodule had been obtained. Thus real-time 4D ultrasonography echo technique appears to provide safe guidance of RFA needles via accurate targeting of HCC nodules, thereby allowing real-time visualization when combined with echo contrast. Furthermore the position of the needle in a still image was confirmed in every area using a multiview procedure
Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H(2)O(2)) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage