22 research outputs found
Application of Long-Range Surface Plasmon Resonance for ABO Blood Typing
In this study, we demonstrate a long-range surface plasmon resonance (LR-SPR) biosensor for the detection of whole cell by captured antigens A and B on the surface of red blood cells (RBCs) as a model. The LR-SPR sensor chip consists of high-refractive index glass, a Cytop film layer, and a thin gold (Au) film, which makes the evanescent field intensity and the penetration depth longer than conventional SPR. Therefore, the LR-SPR biosensor has improved capability for detecting large analytes, such as RBCs. The antibodies specific to blood group A and group B (Anti-A and Anti-B) are covalently immobilized on a grafting self-assembled monolayer (SAM)/Au surface on the biosensor. For blood typing, RBC samples can be detected by the LR-SPR biosensor through a change in the refractive index. We determined that the results of blood typing using the LR-SPR biosensor are consistent with the results obtained from the agglutination test. We obtained the lowest detection limits of 1.58 × 105 cells/ml for RBC-A and 3.83 × 105 cells/ml for RBC-B, indicating that the LR-SPR chip has a higher sensitivity than conventional SPR biosensors (3.3 × 108 cells/ml). The surface of the biosensor can be efficiently regenerated using 20 mM NaOH. In summary, as the LR-SPR technique is sensitive and has a simple experimental setup, it can easily be applied for ABO blood group typing
In Situ Study of Electropolymerized Poly(3-aminobenzoic acid) Thin Film on BD-R and DVD-R Grating Substrates by Electrochemical-Transmission Surface Plasmon Resonance Spectroscopy
The electropolymerization process and doping/dedoping properties of poly(3-aminobenzoic acid) (PABA) thin films on gold-coated commercial BD-R and DVD-R grating substrates were simultaneously studied by the combination of electrochemical technique and transmission surface plasmon resonance (TSPR) spectroscopy. The optical property as a function of the applied potentials and time dependence during electropolymerization were studied. The obtained TSPR wavelength scan spectra after electropolymerization showed that the maximum wavelength slightly shifted to longer wavelength indicating the increase of film thickness. In addition, the change during construction of PABA-based immunosensor for label-free detection of human immunoglobulin G can be observed