15 research outputs found

    Inhibition of HBV Transcription From cccDNA With Nitazoxanide by Targeting the HBx–DDB1 InteractionSummary

    No full text
    Background & Aims: Hepatitis B virus (HBV) infection is a major health concern worldwide. Although currently used nucleos(t)ide analogs efficiently inhibit viral replication, viral proteins transcribed from the episomal viral covalently closed circular DNA (cccDNA) minichromosome continue to be expressed long-term. Because high viral RNA or antigen loads may play a biological role during this chronicity, the elimination of viral products is an ultimate goal of HBV treatment. HBV regulatory protein X (HBx) was recently found to promote transcription of cccDNA with degradation of Smc5/6 through the interaction of HBx with the host protein DDB1. Here, this protein–protein interaction was considered as a new molecular target of HBV treatment. Methods: To identify candidate compounds that target the HBx–DDB1 interaction, a newly constructed split luciferase assay system was applied to comprehensive compound screening. The effects of the identified compounds on HBV transcription and cccDNA maintenance were determined using HBV minicircle DNA, which mimics HBV cccDNA, and the natural HBV infection model of human primary hepatocytes. Results: We show that nitazoxanide (NTZ), a thiazolide anti-infective agent that has been approved by the FDA for protozoan enteritis, efficiently inhibits the HBx–DDB1 protein interaction. NTZ significantly restores Smc5 protein levels and suppresses viral transcription and viral protein production in the HBV minicircle system and in human primary hepatocytes naturally infected with HBV. Conclusions: These results indicate that NTZ, which targets an HBV-related viral–host protein interaction, may be a promising new therapeutic agent and a step toward a functional HBV cure. Keywords: Drug Screening, Minicircle, Primary Hepatocyte Infectio

    ISGF3 with reduced phosphorylation is associated with constitutive expression of interferon-induced genes in aging cells

    No full text
    Aging and inflammation: aging cells express interferon-stimulated genes in a non-canonical pathway Aging cells express many kinds of inflammation-related genes called SASP (senescence-associated secretary-phenotype), which are involved in aging-associated phenotypes. However, the underlying molecular mechanisms how such inflammatory gene expression is induced in aging cells are unclear. A team led by Motoyuki Otsuka at the University of Tokyo found that using senescent human fibroblasts interferon-stimulated genes do not express in a canonical interferon-related intracellular signaling pathway. Normally, interferon-stimulated genes are expressed through the phosphorylation of STAT proteins triggered by interferon stimulation. In contrast, in senescent cells, interferon-stimulated genes were highly expressed without interferon stimulation and the representative STAT phosphorylation was not induced. These findings indicate that the interferon-stimulated genes in aging cells are expressed in a mechanism different from a canonical interferon-related pathway. Further research into these phenomena may develop a way to intervene the senescence-associated phenotypes in aging
    corecore