91 research outputs found

    Rigid Fixation of Intraoral Vertico-Sagittal Ramus Osteotomy for Mandibular Prognathism

    Get PDF
    The standard surgical treatment for prognathism is sagittal split ramus osteotomy (SSRO) if the proximal and distal segments of the ramus require fixing with screws or metal plates. In this procedure, however, it is frequently difficult to avoid neurosensory disturbance (NSD) of the inferior alveolar nerve (IAN) when the posterior margin of the ramus curves inward or when the ramus is thin (Fig 1A, B). This report describes a new alternative procedure, intraoral vertico-sagittal ramus osteotomy (IVSRO), 1 a modification of SSRO and intraoral vertical ramus osteotomy (IVRO). One of the main advantages of IVSRO is that it avoids IAN damage, because the ramus can be split parallel to the original sagittal plane posterior to the point between the mandibular canal and the lateral cortical bone plate immediately in front of the antilingular prominence. Another advantage of IVSRO is that the area in which screws can be inserted is relatively large, if the subcoronoid area on the distal segment and subcondylar area on the proximal segment are used. The 2 segments can be fixed in these areas with bicortical bone screws, with or without a cheek incision (Fig 1C). This report introduces rigid fixation of IVSRO for mandibular prognathism

    Effectiveness of surgery and hyperbaric oxygen for antiresorptive agent-related osteonecrosis of the jaw: A subgroup analysis by disease stage

    Get PDF
    Antiresorptive agent-related osteonecrosis of the jaw (ARONJ) is an adverse event induced by antiresorptive agents (ARAs). The purpose of this study was to evaluate variables, mainly surgery and hyperbaric oxygen (HBO) therapy, associated with treatment outcomes in patients with a diagnosis of ARONJ at a single center. We enrolled consecutive patients who presented to our hospital for the management of stage 2 or 3 ARONJ between January 2003 and December 2019. The relationship between potentially predictive factors and outcome variables was examined using statistical analyses, along with a subgroup analysis based on disease stage. Of 252 patients included in this study, 206 had stage 2 ARONJ and 46 had stage 3 ARONJ. There were 119 patients with osteoporosis and 133 with malignant disease. In total, 139 patients were healed, and the healing rate of patients with stage 3 ARONJ was lower than that of patients with stage 2 ARONJ. With regard to the combination of surgery and HBO therapy, most patients underwent HBO before and after surgery. In the univariable analysis, surgery showed a therapeutic effect in both stage 2 and 3 ARONJ, whereas HBO showed a therapeutic effect in stage 2 ARONJ. In the multivariable analysis for stage 2 ARONJ, extensive surgery showed a stronger association with healing than conservative surgery, whereas ≥46 sessions of HBO therapy was less associated with healing than was non-HBO therapy. Our findings suggest that extensive surgery is highly effective against ARONJ regardless of disease stage if there is a sequestrum separation and systemic tolerance, whereas HBO therapy before and after surgical approach can be effective. Further studies are needed to identify treatment strategies for patients with treatment-refractory ARONJ who may be forced to undergo long-term HBO therapy with the expectation of sequestrum separation

    Hypertension, Periodontal Disease, and Potassium Intake in Nonsmoking, Nondrinker African Women on No Medication

    Get PDF
    The purpose of this cross-sectional study was to investigate the association of periodontitis and/or tooth loss with hypertension by excluding the common confounders. Eighty-one Tanzanian women who were aged 46–58 years, nonsmokers, nonalcoholic drinkers, and on no medication underwent clinical examination. Multiple-regression analysis showed that the severity of periodontitis was significantly correlated with increased systolic blood pressure and diastolic blood pressure. Simple-regression analysis indicated that the severity of periodontitis was inversely correlated with 24-hour urinary excretion of potassium (r = −0.579, P = 0.0004) and also inversely with the frequency of intakes of green vegetables (r = −0.232, P = 0.031) and fruits (r = −0.217, P = 0.0043). Low-potassium intake in the diet mostly accompanied by low dietary fiber intake increases BP as well as periodontal inflammation. Potassium intake may be an important factor linking periodontitis and hypertension in middle-aged nonsmoking and nonalcoholic women on no medication, although chronic inflammation such as periodontitis may cause hypertension through a more direct mechanism

    Simultaneous gene transfer of bone morphogenetic protein (BMP)-2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Get PDF
    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods: First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results: In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a timedependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP- 4-expressing cells resided in the matrix between muscle fibers. Conclusion: The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.</p

    Feasibility of Molecularly Targeted Therapy for Tooth Regeneration

    Get PDF
    [Extract] The tooth is a complex organ that consists of enamel, dentin, cementum, and pulp. Missing teeth is frequently occurring problem in aging populations. To treat these defects, the current approach involves prostheses, autotransplantation, and dental implants. The exploration of new strategies for tooth replacement has become a hot topic. Using the foundations of experimental embryology, developmental and molecular biology, tooth regeneration is becoming realistic possibility. Several different methods have been proposed to achieve biological tooth replacement. These include scaffold-based tooth regeneration, cell pellet engineering, stimulation of the formation of a third dentition, and gene-manipulated tooth regeneration. The idea that a third dentition might be locally induced to replace missing teeth is an attractive concept (Young et al., 2005; Edward & Mason, 2006; Takahashi et al., 2008, 2013). This approach is generally presented in terms of adding molecules to induce de novo tooth initiation in the mouth. Tooth development is the result of reciprocal and reiterative signaling between oral ectoderm-derived dental epithelium and cranial neural crest cell-derived dental mesenchyme under genetic control (Thesleff, 2006). More than 200 genes are known to be expressed during tooth development (http://bite-it.helsinki.fi/). A number of mouse mutants are now starting to provide some insights into the mechanisms of supernumerary tooth formation. Multiple supernumerary teeth may have genetic components in their etiology and partially represent the third dentition in humans. Such candidate molecules might be those that are involved in embryonic tooth induction, in successional tooth formation, or in the control of the number of teeth. This means that it may be possible to induce de novo tooth formation by the in situ repression or activation of a single candidate molecule. In this review, we provide an overview of the collective knowledge of tooth regeneration, especially regarding the control of the number of teeth for molecularly targeted therapy by the stimulation of a third dentition

    Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder.

    Get PDF
    Mesenchymal stem cells are an interesting source of material for regenerative medicine. The present study aimed at characterizing the phenotype and differentiation potential of adherent synovial fluid-derived cells from temporomandibular joint (TMJ) disorder patients

    Circulatory C-type natriuretic peptide reduces mucopolysaccharidosis-associated craniofacial hypoplasia in vivo

    Get PDF
    Skeletal alterations in the head and neck region, such as midfacial hypoplasia, foramen magnum stenosis and spinal canal stenosis, are commonly observed in patients with mucopolysaccharidosis (MPS). However, enzyme replacement therapy (ERT), one of the major treatment approaches for MPS, shows limited efficacy for skeletal conditions. In this study, we analysed the craniofacial morphology of mice with MPS type VII, and investigated the underlying mechanisms promoting jaw deformities in these animals. Furthermore, we investigated the effects of C-type natriuretic peptide (CNP), a potent endochondral ossification promoter, on growth impairment of the craniofacial region in MPS VII mice when administered alone or in combination with ERT. MPS VII mice exhibited midfacial hypoplasia caused by impaired endochondral ossification, and histological analysis revealed increased number of swelling cells in the resting zone of the spheno-occipital synchondrosis (SOS), an important growth centre for craniomaxillofacial skeletogenesis. We crossed MPS VII mice with transgenic mice in which CNP was expressed in the liver under the control of the human serum amyloid-P component promoter, resulting in elevated levels of circulatory CNP. The maxillofacial morphological abnormalities associated with MPS VII were ameliorated by CNP expression, and further prevented by a combination of CNP and ERT. Histological analysis showed that ERT decreased the swelling cell number, and CNP treatment increased the width of the proliferative and hypertrophic zones of the SOS. Furthermore, the foramen magnum and spinal stenoses observed in MPS VII mice were significantly alleviated by CNP and ERT combination. These results demonstrate the therapeutic potential of CNP, which can be used to enhance ERT outcome for MPS VII-associated head and neck abnormalities

    Analysis of mineral apposition rates during alveolar bone regeneration over three weeks following transfer of BMP-2/7 gene via in vivo electroporation

    Get PDF
    Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bone-staining revealed that MAR of alveolar bone was as similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining non-viral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks
    corecore