21 research outputs found

    Aerial Torsional Work Utilizing a Multirotor UAV with Add-on Thrust Vectoring Device

    No full text
    Aerial manipulation aims to combine the versatility and the agility of aerial platforms with the manipulation capabilities of robotic arms. Their fast deployment allows for their implementation in maintenance tasks and support during disaster situations. However, the under-actuated nature of multirotor UAVs limits the magnitude and direction of the forces an aerial vehicle can safely exert during manipulation tasks. In this paper, the problems associated with UAVs and torsional tasks constraints regarding valve turning are addressed. An add-on thrust vectoring device which enhances manipulation options available to a conventional multirotor UAV is developed and described. The proposed system allows for a partial decoupling of the attitude and velocity vector of a multirotor. This permits stable translational flight and higher torque capabilities for torsional tasks. The separation of attitude and the velocity vector that allows for the design of a passive mechanism for valve operation is presented in this paper as well. The experimental results illustrate the forces and torques that can be generated in the evaluated operation modes

    Development of Add-On Planar Translational Driving System for Aerial Manipulation with Multirotor Platform

    No full text
    We propose an add-on planar translational driving system (ATD) which can be equipped on a multirotor platform for aerial manipulation. The device is lightweight and consists of three ducted fans controlled via an on-board CPU. It uses a simple control method and enables a multirotor to perform positioning and generate force in two dimensions while keeping the airframe horizontal. By translating the multirotor without changing attitude, it can more smoothly and easily perform many types of aerial manipulation tasks with higher positioning accuracy. In this paper, we mainly show the design, modeling, and control of the ATD. Several preliminary experiments were performed to verify the positioning accuracy and effectiveness of the system. In addition, we successfully performed the push and pull task using a rigid arm

    Lightweight Multipurpose Three-Arm Aerial Manipulator Systems for UAV Adaptive Leveling after Landing and Overhead Docking

    No full text
    In aerial manipulation, the position and size of a manipulator attached to an aerial robot defines its workspace relative to the robot. However, the working region of a multipurpose robot is determined by its task and is not always predictable prior to deployment. In this paper, the development of a multipurpose manipulator design for a three-armed UAV with a large workspace around its airframe is proposed. The manipulator is designed to be lightweight and slim in order to not disrupt the UAV during in-flight manipulator movements. In the experiments, we demonstrate various advanced and critical tasks required of an aerial robot when deployed in a remote environment, focusing on the landing and docking tasks, which is accomplished using a single manipulator system

    Variable Baseline and Flexible Configuration Stereo Vision Using Two Aerial Robots

    No full text
    In this work, a new method for aerial robot remote sensing using stereo vision is proposed. A variable baseline and flexible configuration stereo setup is achieved by separating the left camera and right camera on two separate quadrotor aerial robots. Monocular cameras, one on each aerial robot, are used as a stereo pair, allowing independent adjustment of the pose of the stereo pair. In contrast to conventional stereo vision where two cameras are fixed, having a flexible configuration system allows a large degree of independence in changing the configuration in accordance with various kinds of applications. Larger baselines can be used for stereo vision of farther away targets while using a vertical stereo configuration in tasks where there would be a loss of horizontal overlap caused by a lack of suitable horizontal configuration. Additionally, a method for the practical use of variable baseline stereo vision is introduced, combining multiple point clouds from multiple stereo baselines. Issues from using an inappropriate baseline, such as estimation error induced by insufficient baseline, and occlusions from using too large a baseline can be avoided with this solution

    Flying Washer: Development of High-Pressure Washing Aerial Robot Employing Multirotor Platform with Add-On Thrusters

    No full text
    In this study, we propose a multirotor aerial robot for high-pressure washing tasks at high altitudes. The aerial robot consists of a multirotor platform, an add-on planar translational driving system (ATD), a visual sensing system, and a high-pressure washing system. The ATD consists of three ducted fans, which can generate force in all directions on the horizontal plane. The ATD also allows the multirotor to suppress the reaction force generated by the nozzle of a high-pressure washing system and inject water accurately. In this study, we propose a method to precisely inject water by installing an ATD in the multirotor and using its driving force to suppress the reaction force and move the multirotor while keeping its posture horizontal. The semi-autonomous system was designed to allow the operator to maneuver the multirotor while maintaining a constant distance from the wall by the sensor feedback with onboard LiDAR or stereo camera. In the experiment, we succeeded in performing the high-pressure washing task in a real environment and verified that the reaction force generated from the nozzle was actually suppressed during the task

    Flying Washer: Development of High-Pressure Washing Aerial Robot Employing Multirotor Platform with Add-On Thrusters

    No full text
    In this study, we propose a multirotor aerial robot for high-pressure washing tasks at high altitudes. The aerial robot consists of a multirotor platform, an add-on planar translational driving system (ATD), a visual sensing system, and a high-pressure washing system. The ATD consists of three ducted fans, which can generate force in all directions on the horizontal plane. The ATD also allows the multirotor to suppress the reaction force generated by the nozzle of a high-pressure washing system and inject water accurately. In this study, we propose a method to precisely inject water by installing an ATD in the multirotor and using its driving force to suppress the reaction force and move the multirotor while keeping its posture horizontal. The semi-autonomous system was designed to allow the operator to maneuver the multirotor while maintaining a constant distance from the wall by the sensor feedback with onboard LiDAR or stereo camera. In the experiment, we succeeded in performing the high-pressure washing task in a real environment and verified that the reaction force generated from the nozzle was actually suppressed during the task

    Variable Baseline and Flexible Configuration Stereo Vision Using Two Aerial Robots

    No full text
    In this work, a new method for aerial robot remote sensing using stereo vision is proposed. A variable baseline and flexible configuration stereo setup is achieved by separating the left camera and right camera on two separate quadrotor aerial robots. Monocular cameras, one on each aerial robot, are used as a stereo pair, allowing independent adjustment of the pose of the stereo pair. In contrast to conventional stereo vision where two cameras are fixed, having a flexible configuration system allows a large degree of independence in changing the configuration in accordance with various kinds of applications. Larger baselines can be used for stereo vision of farther away targets while using a vertical stereo configuration in tasks where there would be a loss of horizontal overlap caused by a lack of suitable horizontal configuration. Additionally, a method for the practical use of variable baseline stereo vision is introduced, combining multiple point clouds from multiple stereo baselines. Issues from using an inappropriate baseline, such as estimation error induced by insufficient baseline, and occlusions from using too large a baseline can be avoided with this solution
    corecore