17 research outputs found

    Long-Term Tumor Control despite Late Pseudoprogression on 18F-FDG-PET following Extremely Hypofractionated Stereotactic Radiotherapy for Retropharyngeal Lymph Node Metastasis from Esthesioneuroblastoma

    No full text
    18F-FDG-PET is a valuable adjunct to conventional imaging for evaluating treatment response following stereotactic body radiotherapy (SBRT) for head and neck malignancies (HNM). The effect of treatment-related inflammation is generally deemed negligible after 12 weeks following conventionally fractionated radiotherapy. Herein, we describe an unusual case showing pseudoprogression on 18F-FDG-PET 2 years after SBRT for retropharyngeal lymph node metastasis (RPLNm) from esthesioneuroblastoma. A 36-year-old man presented with right RPLNm 32 months after the diagnosis of esthesioneuroblastoma associated with ectopic adrenocorticotropic hormone production. The RPLNm was treated with SBRT in 2 fractions over 8 days using dynamic conformal arcs with concomitant chemotherapy with cisplatin and etoposide. Although follow-up MRI showed sustained lesion regression, the early/delayed maximum standardized uptake (SUVmax) values on dual-time-point 18F-FDG-PET obtained 1 and 2 years after SBRT were 7.7/8.3 and 8.5/10.1, respectively, suggesting local progression. Despite no subsequent focal or systemic treatment, the SUVmax values gradually decreased thereafter over a period of 4 years (3.3/3.4 at 76 months). MRI obtained 7 years after SBRT revealed sustained tumor regression. No obvious relevant toxicities have occurred. Thus, caution should be exercised in the interpretation of the SUVmax change following ablative irradiation for HNM

    Gradual Recovery from Nonambulatory Quadriparesis Caused by Metastatic Epidural Cervical Cord Compression in an Octogenarian Gallbladder Carcinoma Patient Treated with Image-Guided Three-Dimensional Conformal Radiotherapy Alone Using a Field-in-Field Technique

    No full text
    Radiotherapy for acute metastatic epidural spinal cord compression (MESCC) involves conventional techniques and dose fractionation schemes, as it needs to be initiated quickly. However, even with rapid intervention, few paraplegic patients regain ambulation. Here, we describe the case of a mid-octogenarian who presented with severe pain and nonambulatory quadriparesis attributable to MESCC at the fifth cervical vertebra, which developed 10 months after the diagnosis of undifferentiated carcinoma of the gallbladder. Image-guided three-dimensional conformal radiotherapy (IG-3DCRT) was started with 25 Gy in 5 fractions followed by a boost of 12 Gy in 3 fractions, for which a field-in-field (FIF) technique was used to optimize the dose distribution. Despite the fact that steroids were not administered, the patient reported significant pain reduction and showed improved motor function 3 and 4 weeks after the IG-3DCRT, respectively. Over the following 4 months, her neurological function gradually improved, and she was consequently able to eat and change clothes without assistance and to walk slowly for 10–20 m using a walker. She succumbed to progression of abdominal disease 8.5 months after the IG-3DCRT. This case demonstrates that image-guided FIF radiotherapy with a dose-escalated hypofractionated regimen can potentially improve functional outcome and local control

    Effect of edema on postimplant dosimetry in prostate brachytherapy using CT/MRI fusion.

    No full text
    To investigate the time course of prostatic edema and the effect on the dose-volume histograms of the prostate for patients treated with brachytherapy.A total of 74 patients with prostate cancer were enrolled in this prospective study. A transrectal ultrasound-based preplan was performed 4 weeks before implantation and computed tomography/magnetic resonance imaging fusion-based postimplant dosimetry was performed on the day after implantation (Day 1) and 30 days after implantation (Day 30). The prostate volume, prostate volume covered by 100% of the prescription dose (V100), and dose covering 90% of the prostate (D90) were evaluated with prostatic edema over time.Prostatic edema was greatest on Day 1, with the mean prostate volume 36% greater than the preplan transrectal ultrasound-based volume; it thereafter decreased over time. It was 9% greater than preplan volume on Day 30. The V(100) increased 5.7% from Day 1 to Day 30, and the D90 increased 13.1% from Day 1 to Day 30. The edema ratio (postplan/preplan) on Day 1 of low-quality implants with a V(100) of 80% V100; p = 0.0272). The lower V100 on Day 1 showed a greater increase from Day 1 to Day 30. A V100 on Day 1 of >92% is unlikely to increase >0% during the interval studied.Low-quality implants on Day 1 were highly associated with edema; however, such a low-quality implant on Day 1, with significant edema, tended to improve by Day 30. If a high-quality implant (V100 >92%) can be obtained on Day 1, a re-examination is no longer necessary.To investigate the time course of prostatic edema and the effect on the dose-volume histograms of the prostate for patients treated with brachytherapy.A total of 74 patients with prostate cancer were enrolled in this prospective study. A transrectal ultrasound-based preplan was performed 4 weeks before implantation and computed tomography/magnetic resonance imaging fusion-based postimplant dosimetry was performed on the day after implantation (Day 1) and 30 days after implantation (Day 30). The prostate volume, prostate volume covered by 100% of the prescription dose (V100), and dose covering 90% of the prostate (D90) were evaluated with prostatic edema over time.Prostatic edema was greatest on Day 1, with the mean prostate volume 36% greater than the preplan transrectal ultrasound-based volume; it thereafter decreased over time. It was 9% greater than preplan volume on Day 30. The V(100) increased 5.7% from Day 1 to Day 30, and the D90 increased 13.1% from Day 1 to Day 30. The edema ratio (postplan/preplan) on Day 1 of low-quality implants with a V(100) of 80% V100; p = 0.0272). The lower V100 on Day 1 showed a greater increase from Day 1 to Day 30. A V100 on Day 1 of >92% is unlikely to increase >0% during the interval studied.Low-quality implants on Day 1 were highly associated with edema; however, such a low-quality implant on Day 1, with significant edema, tended to improve by Day 30. If a high-quality implant (V100 >92%) can be obtained on Day 1, a re-examination is no longer necessary

    MRI-based preplanning in low-dose-rate prostate brachytherapy.

    Get PDF
    To compare the dosimetric results between MRI-based and TRUS-based preplanning in permanent prostate brachytherapy, and to estimate the accuracy of MRI-based preplanning by comparing with CT/MRI fusion-based postimplant dosimetry.Twenty-one patients were entered in this prospective study with written informed consent. MRI-based and TRUS-based preplanning were performed. The seed and needle locations were identical according to MRI-based and TRUS-based preplanning. MRI-based and TRUS-based preplanning were compared using DVH-related parameters. Following brachytherapy, the accuracy of the MRI-based preplanning was evaluated by comparing it with CT/MRI fusion-based postimplant dosimetry.Mean MRI-based prostate volume was slightly underestimated (0.73 cc in mean volume) in comparison to TRUS-based volume. There were no significant differences in the mean DVH-related parameters except with rectal V(100)(cc) between TRUS-based and MRI-based preplanning. Mean rectal V(100)(cc) was 0.74 cc in TRUS-based and 0.29 cc in MRI-based preplanning, respectively, and the values demonstrated a statistical difference. There was no statistical difference in mean rectal V(150)(cc), and rectal V(100)(cc) between MRI-based preplanning and CT/MRI fusion-based postimplant dosimetry.Prostate volume estimation and DVH-related parameters in MRI-based preplanning were almost identical to TRUS-based preplanning. From the results of CT/MRI fusion-based postimplant dosimetry, MRI-based preplanning was therefore found to be a reliable and useful modality, as well as being helpful for TRUS-based preplanning. MRI-based preplanning can more accurately predict postimplant rectal dose than TRUS-based preplanning.To compare the dosimetric results between MRI-based and TRUS-based preplanning in permanent prostate brachytherapy, and to estimate the accuracy of MRI-based preplanning by comparing with CT/MRI fusion-based postimplant dosimetry.Twenty-one patients were entered in this prospective study with written informed consent. MRI-based and TRUS-based preplanning were performed. The seed and needle locations were identical according to MRI-based and TRUS-based preplanning. MRI-based and TRUS-based preplanning were compared using DVH-related parameters. Following brachytherapy, the accuracy of the MRI-based preplanning was evaluated by comparing it with CT/MRI fusion-based postimplant dosimetry.Mean MRI-based prostate volume was slightly underestimated (0.73 cc in mean volume) in comparison to TRUS-based volume. There were no significant differences in the mean DVH-related parameters except with rectal V(100)(cc) between TRUS-based and MRI-based preplanning. Mean rectal V(100)(cc) was 0.74 cc in TRUS-based and 0.29 cc in MRI-based preplanning, respectively, and the values demonstrated a statistical difference. There was no statistical difference in mean rectal V(150)(cc), and rectal V(100)(cc) between MRI-based preplanning and CT/MRI fusion-based postimplant dosimetry.Prostate volume estimation and DVH-related parameters in MRI-based preplanning were almost identical to TRUS-based preplanning. From the results of CT/MRI fusion-based postimplant dosimetry, MRI-based preplanning was therefore found to be a reliable and useful modality, as well as being helpful for TRUS-based preplanning. MRI-based preplanning can more accurately predict postimplant rectal dose than TRUS-based preplanning

    Comparison of urethral diameters for calculating the urethral dose after permanent prostate brachytherapy.

    No full text
    No studies have yet evaluated the effects of a dosimetric analysis for different urethral volumes. We therefore evaluated the effects of a dosimetric analysis to determine the different urethral volumes.This study was based on computed tomography/magnetic resonance imaging (CT/MRI) combined findings in 30 patients who had undergone prostate brachytherapy. Postimplant CT/MRI scans were performed 30 days after the implant. The urethra was contoured based on its diameter (8, 6, 4, 2, and 0 mm). The total urethral volume-in cubic centimeters [UrV150/200(cc)] and percent (UrV150%/200%), of the urethra receiving 150% or 200% of the prescribed dose-and the doses (UrD90/30/5) in Grays to 90%, 30%, and 5% of the urethral volume were measured based on the urethral diameters.The UrV150(cc) and UrD30 were statistically different between the of 8-, 6-, 4-, 2-, and 0-mm diameters, whereas the UrD5 was statistically different only between the 8-, 6-, and 4-mm diameters. Especially for UrD5, there was an approximately 40-Gy difference between the mean values for the 8- and 0-mm diameters.We recommend that the urethra should be contoured as a 4- to 6-mm diameter circle or one side of a triangle of 5-7 mm. By standardizing the urethral diameter, the urethral dose will be less affected by the total urethral volume.No studies have yet evaluated the effects of a dosimetric analysis for different urethral volumes. We therefore evaluated the effects of a dosimetric analysis to determine the different urethral volumes.This study was based on computed tomography/magnetic resonance imaging (CT/MRI) combined findings in 30 patients who had undergone prostate brachytherapy. Postimplant CT/MRI scans were performed 30 days after the implant. The urethra was contoured based on its diameter (8, 6, 4, 2, and 0 mm). The total urethral volume-in cubic centimeters [UrV150/200(cc)] and percent (UrV150%/200%), of the urethra receiving 150% or 200% of the prescribed dose-and the doses (UrD90/30/5) in Grays to 90%, 30%, and 5% of the urethral volume were measured based on the urethral diameters.The UrV150(cc) and UrD30 were statistically different between the of 8-, 6-, 4-, 2-, and 0-mm diameters, whereas the UrD5 was statistically different only between the 8-, 6-, and 4-mm diameters. Especially for UrD5, there was an approximately 40-Gy difference between the mean values for the 8- and 0-mm diameters.We recommend that the urethra should be contoured as a 4- to 6-mm diameter circle or one side of a triangle of 5-7 mm. By standardizing the urethral diameter, the urethral dose will be less affected by the total urethral volume
    corecore